• 제목/요약/키워드: wet strength

검색결과 643건 처리시간 0.027초

테르펜 개질 페놀 수지 구조에 따른 배합고무 물성 변화 (Change of Physical Property of Rubber Compound by Terpene Modified Phenolic Resin Structure)

  • 김건옥;김도형;송요순
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.310-316
    • /
    • 2020
  • 테르펜 개질 페놀 수지는 타이어의 주행 안전성과 관련 있는 웨트 트랙션과 연비와 관련된 구름저항을 개선하기 위해 사용한다. 이 시험은 테르펜 개질 페놀 수지의 기본 구조가 각각 알파 피넨, 베타 피넨, 델타 리모넨으로 달리한 수지를 타이어 트레드 배합물에 첨가하여 알킬 페놀 수지의 배합물과 물성 차이를 비교하였다. 알킬 페놀 수지는 웨트 트랙션과 관련 있는 0 ℃에서 탄젠트 델타가 테르펜 개질 페놀 수지와 큰 차이가 없지만 구름저항과 관련 있는 80℃에서 탄젠트 델타가 높게 나타나 연비 개선 효과가 적었다. 테르펜 개질 페놀 수지 중 베타 피넨은 웨트 트랙션과 연비 개선 효과가 다른 수지에 비해 고르게 나타났으며, 델타 리모넨 수지는 웨트 트랙션 개선효과가 가장 좋았고, 인장강도 및 마모 성능은 알킬 페놀 수지가 비교적 높게 나왔다. 모든 테르펜 개질 수지는 구름저항에서 알킬 페놀수지보다 우수하여 연비 개선효과 좋다고 할 수 있으며, 블랭크에 비해 다른 특성도 나아지는 효과를 보였다. 이 시험에서 사용된 페놀 수지의 특성을 참고하여 타이어 컴파운드를 배합할 때 개질된 테르펜 페놀 수지를 선택하면 웨트 트랙션, 구름저항 등의 특성을 효과적으로 개선한 컴파운드를 만들 수 있다.

반복적 염수침지가 강섬유 혼입 콘크리트의 휨성능에 미치는 영향 (Effect of Repeated Wet/Dry Cycles of Salt Solution on Flexural Performance of Steel Fiber Reinforced Concrete)

  • 김지현;최유진;정철우
    • 한국건축시공학회지
    • /
    • 제22권6호
    • /
    • pp.553-564
    • /
    • 2022
  • 콘크리트는 건설분야의 대표적인 복합재료로써 아주 우수한 재료이나, 불균질성을 가진 취성적 재료로 휨이나 인장력에 대해 취약한 거동을 보인다. 이러한 단점을 보완하기 위해 다양한 종류의 섬유를 보강한 콘크리트를 활용하고 있다. 특히, 강섬유는 다른 고분자 섬유에 비해 시장성이 좋으며 우수한 역학적 성능을 가지고 있어 콘크리트 보강재로 널리 사용되고 있다. 그러나 해양 환경에 노출된 부위에 시공할 때 염소이온 침투에 따른 부식의 영향으로 콘크리트의 내구성을 저하시킨다는 문제점을 가진다. 따라서 본 연구에서는 반복적 연수침지가 강섬유 혼입 콘크리트에 미치는 다양한 영향들에 관해 평가해 보고자 하였다. 실험 결과에 따르면, 37주간의 반복적 염수 침지 기간 동안 콘크리트의 상대동탄성 계수의 감소는 관찰되지 않았고, 염수 침지 종료 후의 휨강도의 감소도 발생하지 않았다. 반복시험 종료 후 시편의 파단면 육안 관찰 시 강섬유 부식의 증거는 확인할 수 없었다. 그러나 휨인성은 감소하였는데, 이는 콘크리트 시편의 절반 정도가 휨 시험의 최대 측정변위인 3mm지점에 도달하지 못하고 파괴가 발생하였기 때문이다. 비록 반복적 염수침지가 강섬유의 부식을 통한 콘크리트 균열을 발생시키지 못하더라도, 휨인성에는 영향을 미칠 수 있으므로 해양환경에 강섬유 보강 콘크리트를 사용 시 이를 유의해야 할 것으로 판단된다.

전기방사법으로 제조한 PU/PEG 복합 지지체의 특성 (Characteristics of PU/PEG Hybrid Scaffolds Prepared by Electrospinning)

  • 설보경;신지연;오가연;이득용;이명현
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.248-255
    • /
    • 2017
  • Polyurethane/polyethylene glycol(PU/PEG) hybrid scaffolds with various concentrations of PEG (0 to 50wt%) were prepared by electrospinning to evaluate the mechanical properties and the biocompatibility of the PU/PEG blend scaffolds. The 12wt% PU/PEG polymers were studied due to the absence of beads. The ultimate tensile strength of 12wt% PU was $8.2{\pm}0.5MPa$. The strength increased to $9.2{\pm}0.7MPa$ when 10% PEG was added to PU. However, the dry and the wet strength of PU/PEG scaffolds began to decrease dramatically when the PEG content was more than 10wt%. No cytotoxicity was observed for all the PU/PEG scaffolds investigated, indicating that the PU/PEG hybrid scaffolds are clinically safe and effective to small-diameter vascular grafts. In addition, the L-929 cells attached and proliferated well on the PU/PEG hybrid scaffolds.

증기터빈 블레이드용 12Cr 합금강의 결정구조에 따른 응력부식강도 평가 (Evaluation of Stress Corrosion Strength According to Crystal Structure of 12Cr Alloy Steel Used Steam Turbine Blade)

  • 강용호;배동호;송정일
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.911-917
    • /
    • 2008
  • It was found that more than 60% of the steam turbine blade damages occurred under the condition alternatively repeated wet and dry of vapor and condensed vapor at the lower pressure stage. And also, it has been well known that both the mechanical properties and environmental strength of the steam turbine blade can be changed by the crystal structure. However, in spite of these common facts, it is difficult to find out the quantitative results including the particular environmental condition as well as the actual service conditions. In this study, as a fundamental investigation to provide design information and reliability evaluation of the 12Cr alloy steel used for a steam turbine blade, stress corrosion strength of the 12Cr alloy steel of which its crystal structure is different was assessed under $2.5{\sim}3.5wt.%$ NaCl solution at 90oC. From the results, S-t curves for predicting damage life and design criterion of the 12Cr alloy steel including corrosion environment as well as S.C.C. condition were obtained.

Utilization of Fly Ash in Asphaltic Concrete Mixtures

  • Min, Jeong-Ki
    • 한국농공학회지
    • /
    • 제42권
    • /
    • pp.85-91
    • /
    • 2000
  • Dwindling supplies and increasing costs of conventional highway materials used in road construction as well as concerns over shrinking landfill spaces prompt researchers to investigate the use of waste products, such as fly ash, as substitute materials in highway construction. The highway industry is capable of utilizing waste materials in large quantities if their effect on pavement performance proves to be technically, economically and environmentally satisfactory. This research examines the effects of fly ash when used as partial replacement of aggregate in asphaltic concrete mixtures. And measuring the effect of fly ash on bulk specific gravity, air void, indirect tensile strength (ITS) under dry and wet conditioning as well as the tensile strength ratio (TSR) of asphaltic concrete mixture. The results indicated that asphaltic concrete mixtures containing 2% and 5% fly ash produced about the same TSR value as control mixture. And all of the mixtures met the minimum ITS and TSR requirements established by the South Carolina Department of Transportation (SC DOT) for Type 1A surface courses. At this point and with this limited study, these asphaltic concrete mixtures is recommended in several applications such as parking lot, secondary roads and driveways.

  • PDF

저배합 흙-시멘트의 역학적 특성 (Mechanical Properties of Soil-Cement with Mixed Low)

  • 공길용;이득원;전상옥;김석열
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.665-672
    • /
    • 2002
  • In order to expand agricultural lands in the western and southern coasts of Korean Peninsula, coarse soils excavated from hillsides have been used as fill materials for reclamation. In order to tackle with the problems and to confirm availability, research on soil improvement involve mixing cement to the fine wet soils. Required undrained shear strength(c$\sub$u/) for fill material was analyzed to be 0.34∼1.2kg/$\textrm{cm}^2$. It has been known that when cement is added to high water content marine clay, its unconfined compression strength increased to 2kg/$\textrm{cm}^2$. Consolidation results show that pre-consolidation pressure increased to 1.8kg/$\textrm{cm}^2$ and 3.4kg/$\textrm{cm}^2$ with the addition of 3% and 5% of cement respectively. This result shows that low-height embankments could be constructed without significant compression. Since the effectiveness of improvement may be different site by site, the mix design for each site is necessary in order to optimize it. The process is first to determine aimed shear strength and then optimum mix ratio of cement after carrying out a series of tests.

  • PDF

극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성 (Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications)

  • 정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제16권8호
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

Shrinkproofing of Wool Fabrics by Pulse Corona Discharge and Enzymes

  • Cho, Sung-Mi;Toru Takagishi;Mitsuru Tahara
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.96-96
    • /
    • 2003
  • In this article modification of wool fibers and fabrics by pulse corona discharge and enzymes, in particular purified keratinase with a single component has been carried out to improve their surface properties. The shrinkproofing, tensile strength, weight loss, and the primary hand values calculated from the mechanical properties of the dual treated wool fabrics were investigated. In addition, the surface morphology of wool fiber was observed under the dry and wet conditions using an environmental SEM, ESEM.

  • PDF

Cellulose-EVOH 섬유의 제조와 물성에 관한 연구 (A Study on the Preparation and Properties of Cellulose-EVOH Fibers)

  • 문병화;임상규;손태원;김삼수
    • 한국염색가공학회지
    • /
    • 제10권5호
    • /
    • pp.19-23
    • /
    • 1998
  • In this study, Cellulose-Poly(Ethylene-Co-Vinyl Alcohol) (EVOH) fibers from MMNO(N-me-thylmorpholine-N-oxide) /water/cellulose/EVOH were prepared according to changes of EVOH content(wt%), which is main factors to dry-jet wet spinning. The mechanical properties and morphology of produced fibers were investigated. The resultant fibers had tensile strength of 3.7∼4.5g/d, elongation of 3.3∼7.5% and exhibited lower density than the density of pure cellulose fiber.

  • PDF

Optimization of Carbonated Cellulose Fiber-Cement Composites

  • Won, Jong-Pil;Bae, Dong-In
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.79-89
    • /
    • 2000
  • This research developed an accelerated curing processe for cellulose fiber reinforced cement composites using vigorous reaction between carbon dioxide and cement paste. A wet-processed cellulose fiber reinforced cement system was considered. Carbonation curing was used to complement conventional accelerated curing. The parametric study followed by optimization investigation indicated that the carbonation curing can enhance the productivity and energy efficiency of manufacturing cellulose fiber reinforced cement composites. This also adds environmental benefits to the technical and economical advantages of the technology.

  • PDF