• Title/Summary/Keyword: wet season

Search Result 283, Processing Time 0.029 seconds

Growth and Fodder Yield of the Gliricidia sepium Provenances in Guardrow System in Dryland Farming Area in Bali, Indonesia

  • Sukanten, I.W.;Nitis, I.M.;Uchida, S.;Lana, K.;Puger, A.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.106-113
    • /
    • 1997
  • A field experiment was carried out on a dryland farming area of southern Bali for 92 weeks, to study the growth and fodder yield of 16 provenances of Gliricidia sepium in guardrow system. The experimental design was completely randomized blocks of 16 treatments (Gliricidia sepium provenances) replicated 3 times, with 6 plants per provenance. Six provenances were from Mexico (M), four from Guatemala (G), and one each from Colombia (C), indonesia (I), Nicaragua (N), Panama (P), Costa Rica (R) and Venezuela (V). After 40 weeks establishment the gliricidia were lopped 4 times a year at 150 cm height, at 2 months intervals during the 4 month wet season and 4 month intervals during the 8 month dry season. Stem elongation varied from 21 to 81 cm, leaf retention from 39 to 240%, branch number from 12 to 35, fodder yield from 1,090 to 3,153 g DW/plant. and wood yield from 743 to 2,750 g DW/plant. Pontezuelo provenance of Colombia (C24), Belen provenance of Nicaragua (N14) and Retalhuleu provenance of Guatemala (G14) were ranked first, second and third, respectively, for stem elongation, leaf retention, fodder and wood yields, during the wet and dry seasons.

Investigation on Selective Mechanization for Wet Season Rice Cultivation in Bangladesh

  • Islam, AKM Saiful;Islam, Md Tariqul;Rahman, Md Shakilur;Rahman, Md Abdur;Kim, Youngjung
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.294-303
    • /
    • 2016
  • Purpose: This study aimed to evaluate the profitability of four selective mechanization systems in rice cultivation. Methods: Field experiments were conducted in the farmers' field during the wet season (June to November) of 2015 in Bangladesh. Mechanization systems were applied to evaluate four different selective levels (treatment) in eleven consequent operations. Seedlings were raised in a traditional seedbed and trays for manual and mechanical transplanting, respectively. Land preparation, irrigation, fertilizer, pesticide, carrying, and threshing and cleaning operations were performed using the same method in all the experimental plots. The mechanical options in the transplanting, weeding, and harvesting operations were changed. The mechanization systems were $S_1$ = hand transplanting + hand weeding + harvesting by sickle, $S_2$ = mechanical transplanting + Bangladesh Rice Research Institute (BRRI) weeder + reaper, $S_3$ = mechanical transplanting + BRRI power weeder + reaper, and $S_4$ = mechanical transplanting + herbicide + reaper. This experiment was performed in a randomized complete block design with four replications. Power tiller, rice transplanter, BRRI weeder, BRRI power weeder, self-propelled reaper, BRRI open drum thresher, and BRRI winnower were used in the respective operations. Accordingly, the techno-economic performances of the different technologies were calculated and compared with those of the traditional system. Results: The mechanically transplanted plot produced 6-10% more yield than the hand transplanted plot because of the use of tender-aged seedlings. Mechanical transplanting reduced 61% labor and 18% cost compared to manual transplanting. The BRRI weeder, BRRI power weeder, and herbicide application reduced 74, 91, and 98% labor, respectively. The latter also saved 72, 63, and 82% cost, respectively, compared to hand weeding. Herbicide application reduced the substantial amount of labor and cost in the weeding operation. Mechanical harvesting also saved 96% labor and 72% cost compared to the traditional method of harvesting using sickle. Selective mechanization saved 15-17% input cost compared to the traditional method of rice cultivation. Conclusions: Mechanical transplanting with the safe use of herbicide and harvesting by reaper is the most cost- and labor-saving operation. The method might be the recommended set of selective mechanization for enhancing productivity.

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

Cutting Frequency Effects on Forage Yield and Stand Persistence of Orchardgrass and Alfalfa-Orchardgrass Fertilized with Dairy Slurry

  • Min, D.H.;Vough, L.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.630-635
    • /
    • 2000
  • Previous research has not evaluated the effects of various rates and frequencies of manure application and frequencies of cutting on yield and stand persistence of cool-season grasses and alfalfa-grass mixtures. The primary objective of this study was to compare the effects of cutting management systems on herbage yield and stand persistence of orchardgrass (Dactylis glomerata L.) and an alfalfa (Medicago sativa L.)-orchardgrass mixture from various rates and frequencies of dairy slurry application. A randomized complete block design with treatments in a sub-subplot arrangement with four replicates was used. The main plot consisted of 2 cutting management systems (4 and 5 annual cuttings). The subplots were 9 fertility treatments: 7 slurry rate and frequency of application treatments, one inorganic fertilizer treatment, and an unfertilized control. The split-split-plots were the two forage species: orchardgrass and alfalfa-orchardgrass mixture. The study was initiated after 1st cutting in 1995. Cumulative yields of the 2nd and subsequent cuttings of both orchardgrass and alfalfa-orchardgrass in 1995 were higher for the 5-cutting system than the 4-cutting system. The 1995 growing season was abnormally dry. In 1996, an abnormally wet year, the reverse was true, total herbage yields being higher for the 4-cutting system than the 5-cutting system. Species response to fertility rate/frequency treatments was different in both years. Higher application rates early in the season and carryover of nutrients from late season applications the previous year appear to be responsible for the yield increases of those fertility treatments having significant yield differences between the cutting management systems. The stand ratings of orchardgrass were not affected by cutting management. In the spring of 1997, however, the stand ratings of alfalfa-orchardgrass in the 4-cutting management system were significantly greater than the 5-cutting management system. The very high manure application rate significantly reduced the stand ratings of alfalfa-orchardgrass in the 5-cutting system.

Spatial distribution and temporal variation of hydrogeochemistry in coastal lagoons and groundwater on the eastern area of korea

  • Chanyoung Jeong;Soo Min Song;Woo-Hyun Jeon;Hee Sun Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.247-247
    • /
    • 2023
  • Coastal lagoons play a crucial role in water exchange, water quality, and biodiversity. It is essential to monitor and understand the dynamics of hydrogeochemistry in lagoon water and its groundwater to preserve and sustainably manage the groundwater-dependent ecosystems like coastal lagoons. This study investigated the spatial and temporal hydrogeochemical characteristics of coastal lagoon (Songjiho) and groundwater on the east coast of Korea. The concentrations of major ions, water isotopes, and nutrients (nitrogen and dissolved organic carbon) in lagoon water and groundwater were periodically monitored for one year. The study revealed that major ions and total dissolved solids (TDS) concentration were higher at deeper depths of aquifers and closer to the coastal area. The hydrogeochemical characteristics of coastal lagoon and groundwater chemistry were classified into two types, Ca-Mg-HCO3 and Na-Cl, based on their spatial location from inland to coastal area. Moreover, the hydrogeochemical characteristics of coastal lagoons and groundwater varied significantly depending on the season. During the wet season, the increased precipitation and evaporation lead to changes in water chemistry. As a result, the total organic carbon (TOC) of coastal lagoons increases during this season, likely due to increased runoff by rainfall whereas the variation of chemical compositions in the lagoon and groundwater were not significant because there is reduced precipitation, resulting in stable water levels and during the dry season. The study emphasizes the impact of spatial distribution and seasonal changes in precipitation, evaporation, and river discharge on the hydrogeochemical characteristics of the coastal aquifer and lagoon system. Understanding these impacts is crucial for managing and protecting coastal lagoons and groundwater resources.

  • PDF

Spatio-temporal potential future drought prediction using machine learning for time series data forecast in Abomey-calavi (South of Benin)

  • Agossou, Amos;Kim, Do Yeon;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.268-268
    • /
    • 2021
  • Groundwater resource is mostly used in Abomey-calavi (southern region of Benin) as main source of water for domestic, industrial, and agricultural activities. Groundwater intake across the region is not perfectly controlled by a network due to the presence of many private boreholes and traditional wells used by the population. After some decades, this important resource is becoming more and more vulnerable and needs more attention. For a better groundwater management in the region of Abomey-calavi, the present study attempts to predict a future probable groundwater drought using Recurrent Neural Network (RNN) for future groundwater level prediction. The RNN model was created in python using jupyter library. Six years monthly groundwater level data was used for the model calibration, two years data for the model test and the model was finaly used to predict two years future groundwater level (years 2020 and 2021). GRI was calculated for 9 wells across the area from 2012 to 2021. The GRI value in dry season (by the end of March) showed groundwater drought for the first time during the study period in 2014 as severe and moderate; from 2015 to 2021 it shows only moderate drought. The rainy season in years 2020 and 2021 is relatively wet and near normal. GRI showed no drought in rainy season during the study period but an important diminution of groundwater level between 2012 and 2021. The Pearson's correlation coefficient calculated between GRI and rainfall from 2005 to 2020 (using only three wells with times series long period data) proved that the groundwater drought mostly observed in dry season is not mainly caused by rainfall scarcity (correlation values between -0.113 and -0.083), but this could be the consequence of an overexploitation of the resource which caused the important spatial and temporal diminution observed from 2012 to 2021.

  • PDF

Mechanisms of Salt Transport in the Han River Estuary, Gyeonggi Bay (경기만 한강 하구에서의 염 수송 메커니즘)

  • Lee, Hye Min;Kim, Jong Wook;Choi, Jae Yoon;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.1
    • /
    • pp.13-29
    • /
    • 2021
  • A 3-D hydrodynamic model is applied in the Han River Estuary system, Gyeonggi Bay, to understand the mechanisms of salt transport. The model run is conducted for 245 days (January 20 to September 20, 2020), including dry and wet seasons. The reproducibility of the model about variation of current velocity and salinity is validated by comparing model results with observation data. The salt transport (FS) is calculated for the northern and southern part of Yeomha channel where salt exchange is active. To analyze the mechanisms of salt transport, FS is decomposed into three components, i.e. advective salt transport derived from river flow (QfS0), diffusive salt transport due to lateral and vertical shear velocity (FE), and tidal oscillatory salt transport due to phase lag between current velocity and salinity (FT). According to the monthly average salt transport, the salt in both dry and wet seasons enters through the southern channel of Ganghwa-do by FT. On the other hand, the salt exits through the eastern channel of Yeongjong-do by QfS0. The salt at Han River Estuary enters towards the upper Han River by FT in dry season, whereas that exits to the open sea by QfS0 in wet season. As a result, mechanisms of salt transport in the Han River Estuary depend on the interaction between QfS0 causing transport to open sea and FT causing transport to the upper Han River.

Time Series and Groundwater Recharge Analyses Using Water Fluctuation Data in Mountain Geumjeong Area (금정산지역의 수위변동 자료를 이용한 시계열 및 지하수 함양량 분석)

  • Kim, Tae-Won;Hamm, Se-Yeong;Cheong, Jae-Yeol;Ryu, Sang-Min;Lee, Jeong-Hwan;Son, Keon-Tae;Kim, Nam-Hoon
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.257-267
    • /
    • 2008
  • Groundwater recharge characteristics in a fractured granite area, Mt. Geumjeong, Korea. was interpreted using bedrock groundwater and wet-land water data. Time series analysis using autocorreclation, cross-correlation and spectral density was conducted for characterizing water level variation and recharge rate in low water and high water seasons. Autocorrelation analysis using water levels resulted in short delay time with weak linearity and memory. Cross-correlation function from cross-correlation analysis was lower in the low water season than the high water season for the bedrock groundwater. The result of water level decline analysis identified groundwater recharge rate of about 11% in the study area.

Effect of Stormwater Runoff on Combined Sewer Overflows in Korea

  • Kim, Lee-Hyung;Kim, Il-Kyu;Lee, Young-Sin;Lim, Kyeong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.107-113
    • /
    • 2007
  • The Kuem-River, one of the largest rivers in Korea, is the primary water source for more than 4 million people in Kongju city and surrounding area. To study the effect of stormwater runoff to CSOs, twelve monitoring sites were selected in two large cities (City of Kongju and City of Buyeo) near the Kuem-River. Monitoring was reformed by collecting grab samples, measuring flow rates during dry and wet seasons during over two rainy seasons. Generally the flow rate of wastewater in combined sewers was rapidly decreased after 23:00 P.M. and gradually increased from 06:30 A.M. in all sites during the dry season. The concentrations of pollutant increase approximately 5 to 7 fold for TSS and 1.5 to 2.5 fold for BOD during the rainy season. Monitoring and statistical analysis show that the groundwater contributes on sewage volume increase (average 25-45% more) during dry periods and the stormwater runoff contributes approximately 51-72% increase during rainy periods. Generally the concentrations of combined sewage were more polluted during the first flush period than after the first flush during a storm event.

Effects of Bedding Materials and Season on the Composition and Production Rate of Broiler Litter as a Nutrient Resource for Ruminants

  • Park, K.K.;Yang, S.Y.;Kim, B.K.;Jung, W.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1598-1603
    • /
    • 2000
  • Broiler litter can be used as a feedstuff for ruminants. Fifty seven litter samples collected from 47 farms in Kyungkee Province of Korea were analyzed to assess the effects of type and amount of bedding (rice hulls vs. sawdust), season (winter vs. summer) and drinkers (bell- vs. trough-type) on composition of broiler litter. Rearing conditions of broilers were also surveyed from the farms to estimate annual production rate of litter. Nutrient composition of broiler litter varied widely and moisture and ash concentrations were higher than observed by other researchers. Ash concentration was higher (p<0.05) for samples taken in winter than in summer and higher (p<0.05) in the rice hulls- than in the sawdust-based litter both in winter and summer. Only minor differences in litter composition were noted between drinkers. Ash was negatively correlated with crude protein and neutral detergent fiber (p<0.01), and acid detergent fiber (p<0.05). The estimated litter production rate was 2.7 kg per bird per flock on a wet basis (60% DM) and the annual production rate was 12.7 kg per bird per yr (60% DM). Therefore, the 42 million broilers per month grown in Korea in 1999 produced a total of 533,400 metric tons of litter.