• Title/Summary/Keyword: wet disk-milling

Search Result 6, Processing Time 0.025 seconds

Preparation of Lignocellulose Nanofibers from Korean White Pine and Its Application to Polyurethane Nanocomposite (국산 잣나무 유래 리그노셀룰로오스 나노섬유 제조 및 이를 이용한 강화 폴리우레탄 나노복합재료)

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.700-707
    • /
    • 2014
  • The effect of steam and ozone pretreatments on fibrillation efficiency by wet disk-milling was investigated. Hemicellulose (40%) and lignin (42%) of Korean white pine were partially removed by steam and ozone pretreatments, respectively. With increasing wet disk-milling time, the diameter of fibers was significantly decreased and its size distribution became narrow. Especially, the average diameters of lignocellulose nanofibers after steam and ozone pretreatments were 19 nm and 12 nm, respectively. Thus-obtained lignocellulose nanofibers-reinforced polyurethane composite was prepared. Tensile strength and elastic modulus were drastically improved with increasing wet disk-milling time and lignocellulose nanofiber content. Nanocomposite reinforced by lignocellulose nanofibers after two pretreatments showed higher tensile properties, compared to that reinforced by lignocellulose nanofiber without pretreatment, at the similar wet disk-milling time.

Changes of Micro- and Nanoscopic Morphology of Various Bioresources by Different Milling Systems

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Lee, Min;Lee, Sang-Min;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.737-745
    • /
    • 2017
  • This study was carried out to investigate the changes in micro- and nanoscopic morphology of cellulose nanofibrils (CNFs) from various bioresources by investigating various mechanical milling systems. Mechanical milling in herbaceous bioresources was more effective than in woody bioresources, demonstrating lower energy consumption and finer morphology. The milling time to reach nanoscopic size was longer in woody bioresources than in herbaceous bioresources. Furthermore, at the same level of wet disk milling time, CNFs from herbaceous bioresources showed more slender morphology than those from woody bioresources. Tensile properties of nanopaper prepared from CNFs of herbaceous bioresources were higher than those of woody bioresources. The highest tensile strength was found to be 77.4 MPa in the nanopaper from Evening prim rose.

Effect of Different Delignification Degrees of Korean White Pine Wood on Fibrillation Efficiency and Tensile Properties of Nanopaper (잣나무의 탈리그닌 정도가 습식 해섬처리 효율 및 나노종이 인장 특성에 미치는 영향)

  • Park, Chan-Woo;Lee, Seo-Ho;Han, Song-Yi;Kim, Bo-Yeon;Jang, Jae-Hyuk;Kim, Nam-Hun;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this study, the effect of delignification degree of Korean white pine wood on fibrillation efficiency by wet disk-milling (WDM) and the properties of thus-obtained microfibrillated cellulose (MFC) were investigated. The effect on the tensile properties of nanopaper was also investigated. The delignification degree was adjusted by repeating 'Wise' method using sodium chlorite and acetic acid. The increase in delignification degree improved fibrillation efficiency, showing the smaller nanofiber dimension at the shorter WDM time. The filtration time of MFC water suspension was increased by the increase of WDM cycles. Tensile strength and elastic modulus of the nanopaper were increased by increasing delignification degree and disk-milling cycles.

Size Fractionation of Cellulose Nanofibers by Settling Method and Their Morphology (셀룰로오스 나노섬유의 중력침강법에 의한 치수분획 및 형태학적 성질)

  • Park, Chan-Woo;Han, Song-Yi;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.398-405
    • /
    • 2016
  • The cellulose nanofibers (CNFs) were prepared by wet disk-milling (WDM) and fractionated by settling method into supernatant, middle and sediment fractions. The diameter and its distribution of the fractionated CNFs were investigated. With increasing WDM passing number, precipitation became delayed. Weight fraction at sediment fraction was decreased, whereas those at supernatant and middle fractions were increased with increasing WDM passing number. Diameter distribution of CNFs at supernatant fraction was narrowest and became broaden at middle and sediment fraction. Filtration time was longer in order of supernatant, middle and sediment fraction.

Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers (잣나무 유래 리그노셀룰로오스 나노섬유 및 나노종이 특성에 미치는 탈리그닌의 영향)

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • This study was carried out to investigate the effect of delignification on properties of lignocellulose nanofibers (LCNFs) prepared by wet disk-milling (WDM) after steam and ozone oxidation pre-treatments and their nanopaper sheets. Delignification treatment was effective to obtain fine morphology with uniform fiber diameter less than 35 nm without aggregation, and increased the specific surface area (SSA) and filtration time of LCNFs. In particular, SSA and filtration time of the LCNFs prepared by WDM after ozone pretreatment increased 1.5 and 5.4 times after further delignification. Delignification also increased whiteness and decreased the redness of nanopaper sheets. The highest color difference (41.9) before and after the delignification was obtained in LCNFs prepared by WDM after the steam pretreatment. Tensile properties of nanopaper sheets were also increased by further delignification. The highest tensile strength was found to be 142 MPa.

Effect of Spray-drying Condition and Surfactant Addition on Morphological Characteristics of Spray-dried Nanocellulose

  • Park, Chan-Woo;Han, Song-Yi;Namgung, Hyun-Woo;Seo, Pureun-Narae;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • In this study, spray-drying yield and morphological characterization of spray-dried cellulose nanofibril (CNF) and TEMPO-oxidized nanocellulose (TONC) depending on spray-drying condition and surfactant addition was investigated. As spray-drying temperature increased, the yield of spray-dried CNF was increased. The highest spray-drying yields in both nanocelluloses were found at didecyl dimethyl ammonium chloride (DDAC) addition of 2.5 phr at all investigated temperatures. The spray-dried CNF was the sphere-like particle, but the spray-dried TONC showed both rod and sphere-like morphology. The average diameter of spray-dried CNF was decreased with increasing DDAC addition amount, resulting in the increase of specific surface area.