• Title/Summary/Keyword: western biomedical medicine

Search Result 157, Processing Time 0.026 seconds

Role of N-terminal Hydrophilic Amino Acids in Molecular Translocation of CTLA-4 to Cell Surface (CTLA-4 항원의 세포막 도달 기작에서 친수성 N말단 아미노산 잔기의 역할)

  • Han, Ji-Woong;Lee, Hye-Ja;Kim, Jin-Mi;Choi, Eun-Young;Chung, Hyun-Joo;Lim, Soo-Bin;Choi, Jang-Won;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • Background: This study was aimed to differentiate two forms of CTLA-4 (CD152) in activated peripheral blood lymphocyte and clarify the mechanism how cytoplasmic form of this molecule is targeted to cell surface. Methods: For this purpose we generated 2 different anti-human CD152 peptide antibodies and 5 different N'-terminal deletion mutant CTLA4Ig fusion proteins and carried out a series of Western blot and ELISA analyses. Antipeptide antibodies made in this study were anti-CTLA4pB and anti-CTLA4pN. The former recognized a region on extracellular single V-like domain and the latter recognized N'-terminal sequence of leader domain of human CD152. Results: In Western blot, the former antibody recognized recombinant human CTLA4Ig fusion protein as an antigen. And this recognition was completely blocked by preincubating antipeptide antibody with the peptide used for the antibody generation at the peptide concentration of 200 ug/ml. These antibodies were recognized human CD152 as a cytoplasmic sequestered- and a membrane bound- forms in phytohemagglutinin (PHA)-stimulated peripheral blood lymphocyte (PBL). These two forms of CD152 were further differentiated by using anti-CTLA4pN and anti-CTLA4pB antibodies such that former recognized cytosolic form only while latter recognized both cytoplasmic- and membraneforms of this molecule. Furthermore, in a transfection expression study of 5 different N'-terminal deletion mutant CTLA4Ig, mutated proteins were secreted out from transfected cell surface only when more than 6 amino acids from N'-terminal were deleted. Conclusion: Our results implies that cytosolic form of CTLA-4 has leader sequence while membrane form of this molecule does not. And also suggested is that at least N'-terminal 6 amino acid residues of human CTLA-4 are required for regulation of targeting this molecule from cytosolic- to membrane- area of activated human peripheral blood T lymphocyte.

PEP-1-HO-1 prevents MPTP-induced degeneration of dopaminergic neurons in a Parkinson's disease mouse model

  • Youn, Jong Kyu;Kim, Dae Won;Kim, Seung Tae;Park, Sung Yeon;Yeo, Eun Ji;Choi, Yeon Joo;Lee, Hae-Ran;Kim, Duk-Soo;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Hwang, Hyun Sook;Choi, Soo Young
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.569-574
    • /
    • 2014
  • Heme oxygenase-1 (HO-1) degrades heme to carbon dioxide, biliverdin, and $Fe^{2+}$, which play important roles in various biochemical processes. In this study, we examined the protective function of HO-1 against oxidative stress in SH-SY5Y cells and in a Parkinson's disease mouse model. Western blot and fluorescence microscopy analysis demonstrated that PEP-1-HO-1, fused with a PEP-1 peptide can cross the cellular membranes of human neuroblastoma SH-SY5Y cells. In addition, the transduced PEP-1-HO-1 inhibited generation of reactive oxygen species (ROS) and cell death caused by 1-methyl-4-phenylpyridinium ion ($MPP^+$). In contrast, HO-1, which has no ability to transduce into SH-SY5Y cells, failed to reduce $MPP^+$-induced cellular toxicity and ROS production. Furthermore, intraperitoneal injected PEP-1-HO-1 crossed the blood-brain barrier in mouse brains. In a PD mouse model, PEP-1-HO-1 significantly protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity and dopaminergic neuronal death. Therefore, PEP-1-HO-1 could be a useful agent in treating oxidative stress induced ailments including PD.

Comparative Characterization of Four Calcium-Binding EF Hand Proteins from Opisthorchis viverrini

  • Emmanoch, Palida;Kosa, Nanthawat;Vichasri-Grams, Suksiri;Tesana, Smarn;Grams, Rudi;Geadkaew-Krenc, Amornrat
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.1
    • /
    • pp.81-86
    • /
    • 2018
  • Four isoforms of calcium binding proteins containing 2 EF hand motifs and a dynein light chain-like domain in the human liver fluke Opisthorchis viverrini, namely OvCaBP1, 2, 3, and 4, were characterized. They had molecular weights of 22.7, 21.6, 23.7, and 22.5 kDa, respectively and showed 37.2-42.1% sequence identity to CaBP22.8 of O. viverrini. All were detected in 2- and 4-week-old immature and mature parasites. Additionally, OvCaBP4 was found in newly excysted juveniles. Polyclonal antibodies against each isoform were generated to detect the native proteins in parasite extracts by Western blot analysis. All OvCaBPs were detected in soluble and insoluble crude worm extracts and in the excretory-secretory product, at approximate sizes of 21-23 kDa. The ion-binding properties of the proteins were analyzed by mobility shift assays with the divalent cations $Ca^{2+}$, $Mg^{2+}$, $Zn^{2+}$, and $Cu^{2+}$. All OvCaBPs showed mobility shifts with $Ca^{2+}$ and $Zn^{2+}$. OvCaBP1 showed also positive results with $Mg^{2+}$ and $Cu^{2+}$. As tegumental proteins, OvCaBP1, 2, and 3 are interesting drug targets for the treatment of opisthorchiasis.

Anti-inflammatory Action of Herbal Medicine Comprised of Scutellaria baicalensis and Chrysanthemum morifolium

  • Min Geun Suh;Hyeon-Son Choi;Kyoungwon Cho;Sung Sun Park;Woo Jung Kim;Hyung Joo Suh;Hoon Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.72-72
    • /
    • 2020
  • Various mixtures were prepared depending on the mixing ratio of Scutellaria baicalensis hot water extract (SB-HW) and Chrysanthemum morifolium ethanol extract (CM-E) and their anti-inflammatory activity were compared. Among them, SB-HW (80 ㎍/mL)/CM-E (120 ㎍/mL) or SB-HW (40 ㎍/mL)/CM-E (160 ㎍/mL) significantly inhibited LPS-stimulated NO and IL-6 levels in RAW 264.7 cells. The SB-HW (80 ㎍/mL)/CM-E (120 ㎍/mL) mixture, which was determined as active mixture, significantly reduced MUC5AC secretion in PMA and LPS-induced NCI-H292 cells. The active mixture also reduced the production of PGE2 and IL-8 in PMA-induced A549 cells. LC-MS/MS analysis showed that the active mixture was composed of high contents of flavone glycosides, such as baicalin and cynaroside. Western blot analysis indicated that the active mixture suppressed phosphorylation of ERK, JNK, and p38, associating with the inhibition of MAPK signaling. Taken together, our results suggest that the active mixture could be applied as a new anti-inflammatory herbal medicine

  • PDF

Change of Extracellular Matrix of Human Vocal Fold Fibroblasts by Vibratory Stimulation (진동이 성대세포주의 세포외기질 변화에 대한 연구)

  • Kim, Ji Min;Shin, Sung-Chan;Kwon, Hyun-Keun;Cheon, Yong-Il;Ro, Jung Hoon;Lee, Byung-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.1
    • /
    • pp.15-23
    • /
    • 2021
  • Background and Objectives During speech, the vocal folds oscillate at frequencies ranging from 100-200 Hz with amplitudes of a few millimeters. Mechanical stimulation is an essential factor which affects metabolism of human vocal folds. The effect of mechanical vibration on the cellular response in the human vocal fold fibroblasts cells (hVFFs) was evaluated. Materials and Method We created a culture systemic device capable of generating vibratory stimulations at human phonation frequencies. To establish optimal cell culture condition, cellular proliferation and viability assay was examined. Quantitative real time polymerase chain reaction was used to assess extracellular matrix (ECM) related and growth factors expression on response to changes in vibratory frequency and amplitude. Western blot was used to investigate ECM and inflammation-related transcription factor activation and its related cellular signaling transduction pathway. Results The cell viability was stable with vibratory stimulation within 24 h. A statistically significant increase of ECM genes (collagen type I alpha 1 and collagen type I alpha 2) and growth factor [transforming growth factor β1 (TGF-β1) and fibroblast growth factor 1 (FGF-1)] observe under the experimental conditions. Vibratory stimulation induced transcriptional activation of NF-κB by phosphorylation of p65 subunit through cellular Mitogen-activated protein kinases activation by extracellular signal regulated kinase and p38 mitogen-activated protein kinases (MAPKs) phosphorylation on hVFFs. Conclusion This study confirmed enhancing synthesis of collagen, TGF-β1 and FGF was testified by vibratory stimulation on hVFFs. This mechanism is thought to be due to the activation of NF-κB and MAPKs. Taken together, these results demonstrate that vibratory bioreactor may be a suitable alternative to hVFFs for studying vocal folds cellular response to vibratory vocalization.

Elevated plasma α1-antichymotrypsin is a biomarker candidate for malaria patients

  • Young Yil, Bahk;Sang Bong, Lee;Jong Bo, Kim;Tong-Soo, Kim;Sung-Jong, Hong;Dong Min, Kim;Sungkeun, Lee
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.571-576
    • /
    • 2022
  • Advancements in the field of proteomics have provided opportunities to develop diagnostic and therapeutic strategies against various diseases. About half of the world's population remains at risk of malaria. Caused by protozoan parasites of the genus Plasmodium, malaria is one of the oldest and largest risk factors responsible for the global burden of infectious diseases with an estimated 3.2 billion persons at risk of infection. For epidemiological surveillance and appropriate treatment of individuals infected with Plasmodium spp., timely detection is critical. In this study, we used combinations of depletion of abundant plasma proteins, 2-dimensional gel electrophoresis (2-DE), image analysis, LC-MS/MS and western blot analysis on the plasma of healthy donors (100 individuals) and vivax and falciparum malaria patients (100 vivax malaria patients and 8 falciparum malaria patients). These analyses revealed that α1-antichymotrypsin (AACT) protein levels were elevated in vivax malaria patient plasma samples (mean fold-change ± standard error: 2.83 ± 0.11, based on band intensities), but not in plasma from patients with other mosquito-borne infectious diseases. The results of AACT immunoblot analyses showed that AACT protein was significantly elevated in vivax and falciparum malaria patient plasma samples (≥ 2-fold) compared to healthy control donor plasma samples, which has not been previously reported.

Bfl-1/A1 Molecules are Induced in Mycobacterium Infected THP-1 Cells in the Early Time Points

  • Park, Sang-Jung;Cho, Jang-Eun;Kim, Yoon-Suk;Cho, Sang-Nae;Lee, Hye-Young
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.201-209
    • /
    • 2012
  • Apoptosis is a physiological programmed cell death process. Tubercle bacilli inhibit apoptosis of alveolar macrophages and phagolysosome fusion. We investigated whether the Bcl-2 family anti-apoptotic member, Bfl-1/A1, plays an important role in the anti-apoptotic process during mycobacterial infection. PMA-treated human monocytoid THP-1 cells were infected with mycobacteria (H37Rv, BCG, and K-strain) at a multiplicity of infection (MOI) of 10 for 0, 1.5, 3, 6, 9, 12, 18, 24, 48, or 72 h. In addition, PMA-treated THP-1 cells were pretreated with specific inhibitors for 45 min before stimulation with mycobacteria at an MOI of 10 for 4 h. After the indicated time, the cells were subject to reverse transcription-polymerase chain reaction (RT-PCR) analysis, and a Bfl-1/A1-specific Western blot was performed. In PMA-differentiated THP-1 cells, the expression level of Bfl-1/A1 mRNA was increased by Mycobacterium tuberculosis (MTB) H37Rv infection. The mRNA level of Bfl-1/A1 peaked 3 h after MTB infection, then declined gradually until 9 h. However, Bfl-1/A1 mRNA induction gradually re-increased from 24 h to 72 h after MTB infection. No difference in Bfl-1/A1 expression was detected following infection with MTB H37Rv, K-strain, or M. bovis BCG. These results were not dependent on mycobacterial virulence. Moreover, mRNA levels of other anti-apoptotic molecules (Mcl-1, Bcl-2, and Bcl-xL) were not increased after MTB H37Rv or K-strain infection. These results suggest that mycobacteria induce the innate immune host defense mechanisms that utilize Bfl-1/A1 molecules at early time points, regardless of virulence.

Tat-Fused Recombinant Human SAG Prevents Dopaminergic Neurodegeneration in a MPTP-Induced Parkinson's Disease Model

  • Sohn, Eun Jeong;Shin, Min Jea;Kim, Dae Won;Ahn, Eun Hee;Jo, Hyo Sang;Kim, Duk-Soo;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Hwang, Hyun Sook;Choi, Soo Young
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.226-233
    • /
    • 2014
  • Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson's disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium ($MPP^+$) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by $MPP^+$ in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.

Effects of fermented black ginseng on wound healing mediated by angiogenesis through the mitogen-activated protein kinase pathway in human umbilical vein endothelial cells

  • Park, Jun Yeon;Lee, Dong-Soo;Kim, Chang-Eop;Shin, Myoung-Sook;Seo, Chang-Seob;Shin, Hyeun-Kyoo;Hwang, Gwi Seo;An, Jun Min;Kim, Su-Nam;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.524-531
    • /
    • 2018
  • Background: Fermented black ginseng (FBG) is produced through several cycles of steam treatment of raw ginseng, at which point its color turns black. During this process, the original ginsenoside components of raw ginseng (e.g., Re, Rg1, Rb1, Rc, and Rb2) are altered, and less-polar ginsenosides are generated (e.g., Rg3, Rg5, Rk1, and Rh4). The aim of this study was to determine the effect of FBG on wound healing. Methods: The effects of FBG on tube formation and on scratch wound healing were measured using human umbilical vein endothelial cells (HUVECs) and HaCaT cells, respectively. Protein phosphorylation of mitogen-activated protein kinase was evaluated via Western blotting. Finally, the wound-healing effects of FBG were assessed using an experimental cutaneous wounds model in mice. Results and Conclusion: The results showed that FBG enhanced the tube formation in HUVECs and migration in HaCaT cells. Western blot analysis revealed that FBG stimulated the phosphorylation of p38 and extracellular signal-regulated kinase in HaCaT cells. Moreover, mice treated with $25{\mu}g/mL$ of FBG exhibited faster wound closure than the control mice did in the experimental cutaneous wounds model in mice.

The effect of Gyungokgo-gamibang extract on hair growth and protein expression in mice (경옥고가미방 추출물이 생쥐의 양모 및 발모 관련 단백 발현에 미치는 영향)

  • Do, Eun-Ju;Hwang, Mee-Yul;Kim, Seung-Yeon;Lee, Jin-Sang;Yang, Dae-Seok;Yang, Chae-Ha;Kim, Mi-Ryeo
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.9-14
    • /
    • 2011
  • Objective : Present study was carried out to investigate the effect of Gyungohkgo-gamibang extract on hair growth and protein expression in an alopecia model of C57BL/6 mice. Methods : Mice were divided into 3 experimental groups including normal (vehicle), Gyungohkgo-gamibang extract (YNS-10) and 5% minoxidil-treated group. The test materials were daily applied with 0.1 ml per mouse on shaved dorsal skin for 3 weeks. The hair growth was monitored by photograph at 5, 10, 15, 21 days after topical application. Then the changes of hair density and hair thickness in the hair-removed area were evaluated by phototrichogram using folliscope. Also the expression level of growth factors related to hair growth was measured by western blotting. Results : Application of minoxidil or YNS-10 stimulated the hair growth compared to vehicle treatment. Therefore hair density of minoxidil or YNS-10 application was increased about 200% and 210% more than in vehicle application on 14 day, respectively. And hair thickness of both minoxidil group and YNS-10 group was increased about 220% and 210 % more than in vehicle spreading on 14 day, respectively. Futhermore the protein expression of IGF-1 and VEGF were significantly up-regulated on 7 day in YNS-10 and minoxidil-spreaded group compared to vehicle-applied group. Conclusion : These data suggest that YNS-10 has potent stimulating activity on hair growth in C57BL/6 mice and potential usefulness as ingredients of hair tonic and hairrestore.