• Title/Summary/Keyword: westerly

Search Result 139, Processing Time 0.027 seconds

Relationships between Precipitation Component and Surface Wind at Kyungsan, Korea (경산에서의 강수의 화학성분과 지상풍과의 관계)

  • 문영수;박문기
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.141-152
    • /
    • 1996
  • This study is an attempt to investigate the chemical components of precipitation and its variation according to surface wind. Precipitation samples were collected by an wet-only precipitation sampler during the period of October 1994 to September 1995 at Kyungsan in Korea. The results obtained in t체s study are summerized as follows. The annual average of precipitation pH is 5.0, the highest month of pH is July of 5.5, and the lowest month of pH is December of 4.4. The most frequent appearance is in the range of pH 5.0 to 5.5 and its rate is 56.8%, The order of ion concentration In precipitation is SO42->NO3->Cl- in case of anion and $Ca^{2+}$>$NH_4^{+}$>$Na^+$>$Mg^{2+}$ in case of cation. It is found from our analysis that the correlation coefficient among the precipitation pH and ion components is below r=0.3, while the correlation coefficient between $SO_4^{2-}$ and NO_3^{-}$, $Na^+$ and $Cl^+$ is above r=0.8, respectively. The mean pH of precipitation is 4.8 under the westerly wind and 5.2 under the easterly wind. The concentrations of anion and cation under the westerly wind are more than the concentrations under the easterly wind. In autumn, the concentration of Na+ and $Cl^+$ under the easterly wind are higher than the concentration under the westerly wind. The correlation coefficients between wind speed and pH, ion components show very low correlation of -0.41 r 0.2. But the present study show that the correlation coefficient between wind speed and pH of precipitation is positive and the correlation coefficients between wind speed and ion concentration is negative.

  • PDF

Effect of urbanization on the light precipitation in the mid-Korean peninsula (한반도 중부지역에서 약한 강수에 미치는 도시화 효과)

  • Eun, Seung-Hee;Chae, Sang-Hee;Kim, Byung-Gon;Chang, Ki-Ho
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.229-241
    • /
    • 2011
  • The continuous urbanizations by a rapid economic growth and a steady increase in population are expected to have a possible impact on meteorology in the downwind region. Long-term (1972~2007) trends of precipitation have been examined in the mid-Korean peninsula for the westerly condition only, along with the sensitivity simulations for a golden day (11 February 2009). During the long-term period, both precipitation amount (PA) and frequency (PF) in the downwind region (Chuncheon, Wonju, Hongcheon) of urban area significantly increased for the westerly and light precipitation ($PA{\leq}1mm\;d^{-1}$) cases, whereas PA and PF in the mountainous region (Daegwallyeong) decreased. The enhancement ratio of PA and PF for the downwind region vs. urban region remarkably increased, which implies a possible urbanization effect on downwind precipitation. In addition, the WRF simulation applied for one golden day demonstrates enhanced updraft and its associated convergence in the downwind area (about 60 km), leading to an increase in the cloud mixing ratio. The sensitivity experiments with the change in surface roughness demonstrates a slight increase in cloud water mixing ratio but a negligible effect on precipitation in the upwind region, whereas those with the change in heat source represents the distinctive convergence and its associated updraft in the downwind region but a decrease in liquid water, which may be attributable to the evaporation of cloud droplet by atmospheric heating induced by an increase in an anthropogenic heat. In spite of limitations in the observation-based analysis and one-day simulation, the current result could provide an evidence of the effect of urbanization on the light precipitation in the downwind region.

The Performance Assessment of Special Observation Program (ProbeX-2009) and the Analysis on the Characteristics of Precipitation at the Ulleungdo (울릉도 특별관측 수행평가 및 강수특성 분석)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Kim, Do-Woo;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.185-196
    • /
    • 2011
  • The performance assessment in radiosonde observation on the special observation program (ProbeX-2009) is performed and the characteristics of precipitation using Auto Weather System (AWS) and radiosonde data in 2009 at the Ulleungdo are investigated. The launching time, observation time, and maximum altitude of radiosonde are satisfied with the regulation from Korea Meteorological Administration (KMA) and World Meteorological Organization (WMO) but the duration of observational time of radiosonde is much shorter than that of the ProbeX-2007 because the altitude of launching site is higher than others in 2007. From the analysis of trajectories of radiosonde, most radiosondes at the Ulleungdo tend to move into the east because the westerly prevail at the middle latitude. However, when the Okhotsk high is expanded to the Korean peninsula and the north-westerly winds strengthen over the East Sea as the subtropical high is retreated, radiosonde tends to move into the south-west and south-east, respectively. Maximum distance appears at the end of observation level before May but the level of maximum distance is changed into 100 hPa after June because the prevailing wind direction is reversed from westerly to easterly at the stratosphere during summer time. The condition of precipitation was more correlated with the dynamic instability except Changma season. Precipitation in 2009 at the Ulleungdo occurred under the marine climate so that total precipitation amounts and precipitation intensity were increased and intensified during nighttime. The local environment favorable for the precipitation during nighttime was while the wind speed at the surface and the inflow from the shoreline were strengthened. Precipitation events also affected by synoptic condition but the localized effect induced by topography was more strengthened at the northern part of Ulleungdo.

Diurnal Variation of Atomospheric Pollutant Concentrations Affected by Development of Windstorms along the Lee Side of Coastal Mountain Area

  • Choi, Hyo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.24 no.1
    • /
    • pp.29-45
    • /
    • 1996
  • Before (March 26, 1994) or after the occurrence of a downslope windstorm (March 29), the NO, $NO_2$, and $SO_2$ at the ground level of Kangnung city were monitored with high concentrations in the afternoon, due to a large amount of gases emitted from combustion of motor vehicle and heating apparatus, especially near 1600-1800 LST and 2000-2100 LST, but at night, they had low concentrations, resulting from small consumptions of vehicle and heating fuels. When both moderate westerly synoptic-scale winds flow over Mt. Taegwallyang and easterly meso-scale sea breeze during the day, atmospheric pollutants should be trapped by two different wind systems, resulting in higher concentration at Kangnung city in the afternoon. At night, the association of westerly synoptic wind and land breeze can produce relatively strong winds and the dissipation by the winds cause these low concentrations to lower and lower, as nightime goes on. From March 27 through 28, an enforced localized windstorm could be produced along the lee side of the mountain near Kangnung, generating westerly internal gravity waves with hydraulic jump motions. Sea breeze toward inland appartantly confines to the bottom of the eastern side of the mountain, due to the interruption of eastward violent internal gravity waves. As the windstorm moves down toward the ground, an encountering point of two opposite winds approaches Kangnung, and a great amount of NO and $NO_2$ were removed by the strong surface winds. Thus, their maximum concentrations are found to be near 18 and 20 LST, 17 and 21 LST. In the nighttime, the more developed storm should produce very strong surface winds and the NO and $NO_2$ could be easily dissipated into other place. The $SO_2$ concentration had no maximum value, that is, almost constant one all day long, due to its removal by the strong surface winds. Especially, the CO concentrations were slightly lower during the strom period than both before or after the strom, but they were nearly constant without much changes during the during the daytime and nighttime.

  • PDF

A Study on the Chemical Features of Precipitition at High Mountain Area (고산지역 강수의 화학 성분 특성에 관한 연구)

  • 최재천;이민영;이선기
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.64-72
    • /
    • 1994
  • Recently, the acid precipitation, composed primarily of dilute $H_2$S $O_4$, HN $O_3$and originating from the burning of fossil fules, has become one of the major environmental problems. This study was carried out to investigate the chemical features of precipitation at Sobaek-san Meteorological Observation Station(mean sea level; 1,340m, 36$^{\circ}$56’N, 128$^{\circ}$27' E)from May 1991 to December 1993. The major Point in this study divided the whole wind directions into two parts. And, the two parts are the north- westerly wind case and south-easterly wind case. The concentration of anions and cations in precipitation were measured by ion chromatography(Dionex 4000i). The volumn weighted mean pH and conductivity values of the whole precipitation period were 5.26, 14.3$mutextrm{s}$/cm, respectively. The order and frequency rate of the major anions concentration in the north- westerly and south easterly wind case were S $O_4$$^{2-}$(49.3%) > N $O_3$$^{[-10]}$ (23.9%) > C $l^{[-10]}$ (14.8%) > $F^{[-10]}$ (12.0%) and S $O_4$$^{2-}$(61.1% ) > N $O_3$$^{[-10]}$ (21.5%) > C $l^{[-10]}$ (13.5%) > F/sip -/(4.0%), respectively. The order and frequency rate of the major cations concentration in the north-westerly and south- easterly wind case were $Ca^{2+}$(49.3%) > N $H_4$$^{+}$(24.2%) >N $a^{+}$(22.4%) >M $g^{2+}$(14.9%) > $K^{+}$(3.8%) and N $H_4$$^{+}$(4:3.8%) $Ca^{2+}$(28.6%) > N $a^{+}$(16.8%) > $K^{+}$(6.3%) > $Mg^{2+}$(4.5%), respectively. The larger anions and cations concentration values than others were S $O_4$$^{2-}$, N $O_3$$^{[-10]}$ and $Ca^{2+}$, N $H_4$$^{+}$, respectively. The correlation coefficient between pH value and ion concentrations for the north-westerly and south-easterly wind case was shown less than 0.5 except for Ca/.sup 2+/ in the statistical analysis SPSS. But the correlation coefficient for the all wind case between sulfate and cations was shown high correlation above 0.6.correlation above 0.6.

  • PDF

Atmospheric Pollutant Concentrations under the Influences of Internal Gravity Wave and Sea-Land Breeze Circulations in the Mountainous Coastal Regions (산악연안지역에서 내부중력파와 해륙풍순환 영향하의 대기오염농도)

  • Hyo Choi;Joon Choi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.18-33
    • /
    • 1995
  • Under the synoptic scale strong westerly winds flowing over the large steep mountains in the eastern coastal region, the strong downslope wind storms such as internal gravity waves should be generated in the lee-side of mountain. Int he daytime as sea breeze circulation induced by meso-scale thermal forcing from sea toward inland confines to the offshore side of coastal sites due to the eastward internal gravity waves. Thus, surface winds near the coastal seas were relatively weaker than those in the open sea or the inland sites. Evidently, two different kinds of atmospheric circulations such as an internal gravity wave circulation with westerly wind and a sea breeze circulation with both easterly wind near the sea surface and westerly in the upper level were apparently produced. Under this situation the atmospheric pollutants at Kangnung city should be trapped by two different circulations in the opposite directions and resulted in the high concentrations of Total Suspended Particles (TSP) and ozone (O3). At night a meso-scale land breeze from land toward the more intensification of westerly winds in the coastal regions. The concentrations of TSP controled by the strong surface winds blowing from the mountain side toward the coastal sea were relatively higher at night than those in the daytime case and the concentrations of O3 due to the downward transport of ozone from the upper atmosphere toward the surface were also much higher at night than during the day. Consequently, the atmospheric pollutant concentrations in the mountainous coastal region under the downslope wind storms were higher than those after and before the occurrences of wind storms.

  • PDF

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF

The Varies of Deviation on the Ship's Head up bearing of the electromagnetic Compass around Ship (선체 주변에서의 전자자기 컴퍼스의 선수방위 자차변화)

  • 조현정;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.11-18
    • /
    • 1999
  • In order to secure accuracy and effectiveness of the electromagnetic compass as information sensor for ship's head up bearing with gyro compass, magnetic compass and electromagnetic compass on the sea and on the dock in land.The results obtained were as follows;1. Between the Northeast and the southsouthwest the deviation on ship's head up bearing on electromagnetic compass got easterly deviation with max. $53^{\cire}$on the East and between the Southwest and the Northnortheast westerly deviation with max. $34^{\cire}$ on the Northwest, of which values were not able to be corrected due to the angle excess of deviation adjustment.2. The varies of deviation seemed to have a tendency to increase easterly deviation on the Northeast and the East, easterly deviation after westerly deviation between the South and the Northwest, small one on the North and the Southeast.3. The varies of deviation of ship were larger than the one of around the dock, were extreme on the bow of forecastle deck and were stable on the ship's center line of compass deck at the dock in land.

  • PDF

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

A Basic Study for Utilization of Autopilot System Using Electromagnetic Compass in a Small Fishing Boat (소형 어선에서 전자자기 컴퍼스를 이용한 항행자동시스템의 실용화에 관한 기초적 연구)

  • Jo, Hyeon-Jeong;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.54-59
    • /
    • 2004
  • Experiments were carried out to measure the variation of the compass error on ship's head up bearing by magnetic compass and electromagnetic compass on berthing at the pier in order to obtain a basic information on the utilization of autopilot system using electromagnetic compass in fishing boat. The wooden fishing boat, turned on attracting fish lamps of power consumption 85kW, steering magnetic compass and electromagnetic compass indicated westerly compass error with 7$^{\circ}$ and 13 $^{\circ}$~16$^{\circ}$ respectively. The FRP fishing boat, turned on attracting fish lamps of power consumption 130kW, electromagnetic compass indicated easterly compass error 19$^{\circ}$~23$^{\circ}$. The steel fishing boat, turned on ship's navigation equipments of power consumption 225kW, steering magnetic compass indicated westerly compass error with 16$^{\circ}$. While the difference of compass error using electromagnetic compass indicated westerly compass error with 68$^{\circ}$ on the upper deck when the navigation and fishing equipment turn on compare to turn off the equipment, it had easterly compass error with 16$^{\circ}$, 32$^{\circ}$, 20$^{\circ}$ on the forecastle deck, wheel house and compass deck respectively.