• Title/Summary/Keyword: welding cycle

Search Result 241, Processing Time 0.025 seconds

Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel (슈퍼 듀플렉스 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향)

  • Nam, Seong-Kil;Park, Se-Jin;Na, Hae-Seong;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.37-37
    • /
    • 2009
  • Due to their high corrosion resistance and improved mechanical properties super-duplex stainless steel (SDSS) are extensively used in petrochemical plants such as facilities in modern oil platform and off-shore process equipment. It is well known that the best mechanical and corrosion resistance properties of super-duplex stainless steel are obtained with a microstructure having approximately equal amounts of austenite and ferrite. And it is also known that sigma($\sigma$), chi($\chi$), secondary austenite(${\gamma}2$), chromium carbides and nitride affected adversely their properties. Therefore these phases must be avoided. However, effects of succeeding weld thermal cycle on the change of microstructure of weldment at multi-pass weld were not seldom experimentally researched. Therefore in the present work, the change of weldmetal microstructure and the effect of microstructure on pitting corrosion property at $40^{\circ}C$ by succeeding each weld thermal cycle were researched. The thermal history of root side was measured experimentally and the change of microstructure of root weld according to thermal cycle of each weld layer was evaluated. And the relationship between microstructure of root weld and pitting corrosion property at $40^{\circ}C$ was also investigated. Results of the present work are show as below. 1. The ferrite contents of root weld are gradually reduced by succeeding weld thermal cycle. 2. The 2nd phases such as sigma($\sigma$), chi($\chi$), secondary austenite(${\gamma}2$), chromium carbides and nitride are increased gradually by succeeding weld thermal cycle. 3. The pitting corrosion was detected in root weld part and weight loss by pitting corrosion is increased in proportional to the time exposed over $600^{\circ}C$ of the root weld. 4. The succeeding weld thermal cycles affect the microstructure of the former weldments and promote the formation of 2nd phases. That is, the more succeeding welds are added, the more 2nd phases are gradually increased. Consequently, it is thougth that this adversely affects pitting corrosion property.

  • PDF

The Low Cycle Fatigue behavior of Laser Welded Sheet Metal (박판형 레이저 용접재의 저주기 피로 특성)

  • 김웅찬;곽대순;김석환;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1025-1028
    • /
    • 2004
  • In this paper, we studied low cycle fatigue behavior of laser welded sheet metal that used automobile body panel. Specimens were manufactured as weld condition and sheet metal using automobile manufacturing company at present. For to know mechanical properties, micro Vicker's hardness test was performed of specimens. But, we can't confirm mechanical properties of weld bead and heat affected zone because laser weld makes very narrow weld bead and heat affected zone than other welding method. Therefore, we performed low cycle fatigue test with similar weldment, dissimilar weldment, similar thickness and dissimilar weldment, and dissimilar thickness and dissimilar weldment for fatigue properties of thickness and welding direction. As well, we analysis stress distribution of base metal, weld bead, and heat affected zone according to strain load using finite element method.

  • PDF

MAGSIM AND SPOTSIM - SIMULATION OF GMA- AND SPOT WELDING FOR TRAINING AND INDUSTRIAL APPLICATION

  • Dilthey, Ulrich;Mokrov, Oleg;Sudnik, Wladislaw;Kudinov, Roman
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.82-88
    • /
    • 2002
  • Simulation systems allow a close inspection of the relation between welding parameters and the resulting weld seam. These systems are very useful in education of weld staff as well as production and planning. In training the influence of variations of parameters can be investigated without the need for real welding experiments. In the design phase requirements of the welding process can be taken into account without several iteration cycles. By estimating a good parameter set for the given welding task the set up phase for a new production cycle can be reduced

  • PDF

Finite Element Analysis of Effect of Preheating on the Residual Stress in 304 Stainless Steel Weldment (304 스테인레스강 용접부 잔류응력에 미치는 예열 효과의 유한요속 해석)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.67-75
    • /
    • 1998
  • This study aimed at he experimental and finite element analytic investigation of the effect of preheating on he residual stress of weldment. In this study, an autogenous arc welding was used on type 304 stainless steel and MARC as F.E.M. common code was utilized in analysis The analyses include transient and moving heat source and thermal properties as function of temperature. During welding, the thermal cycles of four locations in the weldment were recorded to investigate of the behavior of thermal stress and residual stress. The experimental and analytic results had good coincidence and show that there are two factors influencing the formation of welding residual stress in preheat process. One is the elevation of welding equilibrium temperature and the other is the increase of amount of heat input. The former decrease welding residual stress and the latter increase welding residual stress. Therefore, the cumulative effects result in the welding residual stress not being improved significantly with preheating in 304 stainless steel.

  • PDF

Fabrication of Mechanical Fatigue Flawed Specimen with Notch Processing (노치가공법에 의한 기계적 피로결함 시험편 제조)

  • Hong, Jae-Geun;Park, Ban-Uk
    • 연구논문집
    • /
    • s.32
    • /
    • pp.55-64
    • /
    • 2002
  • Performance demonstration with real flawed specimens has been strongly required for nondestructive evaluation of safety class components in nuclear power plant. Specimen has been designed to produce mechanical fatigue flaw with tension stress and fatigue flaw has been produced to control stress and cycle, for suitable roughness. Notch condition is considered for control of fracture mode. After seal welding for fracture surface, final welding was performed to complete flaw specimen with GTAW(Gas Tungsten Arc welding) and FCAW(Flux Cored Arc Welding). It was demonstrated flaw size of flawed specimen by radiographic. testing and ultrasonic testing.

  • PDF

STATUS OF WELDING FOR POWER PLANT FACILITIES

  • Hur, Sung-do
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.342-348
    • /
    • 2002
  • The welding technology for production of power plant facility as for other industries has been progressing forward automation and mechanization for cost reduction and shortening of cycle time. The welding for boiler tube is automated or mechanized as the parts and subassemblies of tubes are conveyed automatically in the shop. The temperature of boiler stearn is being progressively increased for higher plant efficiency. The welding of nuclear component is characterized by heavy thickness and narrow gap Submerged Arc Welding. Narrow gap Gas Metal Arc Welding and Electron Beam Welding is applied to turbine diaphragm. To improve the resistance of solid particle erosion of turbine blade and nozzle partition, HVOF spray technology and boriding process has been applied.

  • PDF

Development of Welding Robot for Corner-piece in LNG Ship (LNG선 화물창의 코너부위 용접로봇 개발)

  • Kim, Jae-Gwon;Lee, Ji-Hyoung;Kim, Jong-Jun;Bae, Beom-Chan;Park, In-Wan;Kim, Kyeong-Ju
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.27-31
    • /
    • 2010
  • Generally, angle pieces at the corners of cargo tank of membrane type LNG carrier ship are manually welded, due to their various shapes and positions. In this study, a GTA welding robot system was developed in order to improve productivity, which consists of a 7-axis manipulator, a system controller, a GTA welding power source, and peripheral devices. The welding system is characterized by capabilities of welding corrugated work pieces as well as 90/135 degree linear work pieces, and controlling the entire weld cycle automatically. The developed system was field tested on actual work pieces and its performance was proven to be successful.

Effects of the Stand-off Distance on the Weld Strength in Magnetic Pulse Welding (전자기펄스용접에서 용접강도에 미치는 접합간격의 영향)

  • Kim, Sung-Wook;Chun, Chang-Keun;Kim, Sook-Hwan
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.48-53
    • /
    • 2008
  • Although Magnetic Pulse Welding(MPW) is not a recently developed technique, it has gained the attention of the automotive industry. MPW has become an accepted welding process because it enables the joining of similar, and dissimilar materials, with a very short cycle time, without the need for filler metal and gases. In this study, the effect of the stand-off distance on the weld strength has been investigated. The compressive strength of the MPW joints was evaluated using UTM. The interface of weld, IMC composition and morpology were studied by SEM and EDS. It was concluded that the stand-off distance and the voltage are the main parameters influencing the strength of weld. In case of too high stand-off distance, it influenced harmful effect because of the resistance of deformation.

Development of a Graphic Simulation Modeller for Robot Welding Process Planning (로보트 용접 공정 계획을 위한 Graphic Simulation Modeller의 개발)

  • Choe, Byeong-Gyu;Jeong, Jae-Yun;Kim, Dong-Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.1
    • /
    • pp.21-32
    • /
    • 1985
  • Presented in this paper is a procedure of developing graphical simulation software for planning robot welding processes. Welding is by far the highest application area for industrial robots, and it has been in great need of such a simulator in designing robot work cells, in justifying the economics of robot welding and in planning robotized welding operations. The model of a robot welding cell consists of four components: They are an welding structure which is a collection of plates to be welded, a positioner to hold the welding structure, a robot with a weld torch, and a set of welding lines (in case of arc welding). Welding structure is modeled by using the reference plane concept and is represented as boundary file which is widely used in solid modeling. Robot itself is modeled as a kinematic linkage system. Also included in the model are such technical constraints as weaving patterns and inclination allowances for each weld joint type. An interactive means is provided to input the welding structure and welding lines on a graphics terminal. Upon completion of input, the program displays the welding structure and welding lines and calculates the center of mass which is used in determining positioner configurations. For a given positioner and robot configuration, the welding line segments that can be covered by the robot are identified, enabling to calculate the robot weld ratio and cycle time. The program is written in FORTRAN for a VAX computer with a Tektronix 4114 graphic terminal.

  • PDF

Resistance Spot Weldability of Cold Rolled HT80 Grade Steel for Automobile Application (80kg/mm$_2$급 高張力 冷延鋼板의 熔接性)

  • 김기철;이기호;장래웅
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.52-59
    • /
    • 1992
  • Resistance spot weldability of cold rolled 80kg/mm$^{2}$ and 45kg/mm$^{2}$ grade high strength steel sheets for automobile structure was investigated focussing on the influences of welding parameters such as welding current and welding time on the weld strength and the nugget formation. The results of this study showed that the optimum ranges of welding current for the grade 80 and grade 45 were 5.0 cycle(250 m sec.) It was also shown that the tensile shear strength of the resistance spot weld was strongly influenced by both current and time applied in welding procedure, however, the tensile shear strength was mainly affected by welding time for the higher strength steel.

  • PDF