• Title/Summary/Keyword: welding automation

Search Result 212, Processing Time 0.024 seconds

The structure Optimization Research of the Automation Welding Equipment of the Large L-type Using the Response Surface Method (반응표면법을 이용한 대형 L-type 자동화용접장치의 구조최적화 연구)

  • Jang, Junho;Jung, Wonjee;Lee, Dongsun;Jung, Jangsik;Jung, Sung Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.138-144
    • /
    • 2013
  • The automation technology for overlay welding is needed due to the occurrence of severe corrosion and abrasion on the surface of internal contact in different shape of fittings. In Korea, different shapes of fittings have been manufactured by using the imported equipment of overlay welding automation at some companies. Thus the research on the development of overlay welding automation system (in short, OWAS) for a large L-type tube is urgently needed. In this paper, the investigation is focused on the optimal design of a supporting base for the (currently developing) OWAS of large L-type tube. Specifically we assume that the base which supports the equipment during the process of overlay welding is loaded as self-weight in the direction of gravity through static analysis especially when it is rotated 180 degree on the OWAS. For optimal design of a supporting base for OWAS of large L-type tube, Solidworks(R) (for 3-dimensional modelling) and ANASYS Workbench(R) (for structural analysis) are incorporated so as to proceed an optimization routines based on Response Surface Method (RSM) and Design of Experiment (DOE). In more specific, DOE finds out major factors (or dimensions) of the supporting base by using MINITAB(R). Then the regression equations between design variables (the major factors of supporting base) and response variables (deformation, stress and safety factor for the supporting base), which will be resulted in by RSM, verify the major factors of DOE. In the next step, Central Composite Design (CCD) plans 20 simulations of ANASYS Workbench(R) and then figures out the optimal values of design variables which will be reflected on the manufacturing of supporting base. Finally welding experiment is conducted to figure out the influence of overlay welding quality in applying the optimized design values of supporting base to the actual OWAS.

A Study of the Comparison for Performance Advancement of Seam Tracking in Gas Metal Arc Welding (가스 메탈 아크 용접에서 추적성능 향상을 위한 성능 비교 연구)

  • Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • There have been continuous efforts for automation of joint tracking system. This automation process is mainly used to do in root pass of gas metal arc welding in the field of heavy industry and shipbuilding etc. For automation, it is important using of vision sensor. Welding robot with vision sensor is used for weld seam tracking on welding fabrication. Recently, it is used to on post-weld inspection for weld quality evaluation. For real time seam tracking, it is very important role in vision process technique. Vision process is included in filtering and thinning, segmentation processing, feature extraction and recognition. In this paper, it has shown performance comparison results of seam tracking for real time root pass on gas metal arc welding. It can be concluded better segment splitting method than iterative averaging technique in the performance results of seam tracking.

TFT LCD 용 Power Inductor Full Automation Winding/Welding System 개발

  • 이우영;진경복;김경수
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.154-158
    • /
    • 2004
  • Power inductor is usually used in the field of the power circuit of a cellular phone, TFT LCD module etc.. This paper presents the development process of Power Inductor Full Automation Winding/Welding System for TFT LCD. This process, the process algorithm, high precision welding current control, design of welding head, high speed, high precision feeding mechanism, and user interface process control program technologies are included.

  • PDF

Inspection about Influences on the Weld Parts through the Change of the Position of Welding Torch and the Voltage During CO2 Welding (CO2용접에서 용접 토치의 위치변화와 전압이 용접부에 미치는 영향고찰)

  • Kim, Bub-Hun;Kim, Won-Il;Lee, Chil-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.2
    • /
    • pp.59-65
    • /
    • 2011
  • $CO_2$ Welding which uses $CO_2$ instead of inert gas is most widely used in industrial sites. Welding rod for $CO_2$ Welding is roughly divided into solid wire and flux cored wire. $CO_2$ Welding has higher efficiency than any other welding methods, and also economic and speedy to handle, that's why is used frequently for welding general structures. As most of studies about $CO_2$ Welding are focused on metallurgical changes of successful joints, they developed theories about the change of configuration on weld parts. This study is especially focused on not only the change of configuration on weld parts, but also the change of the penetrating depth through changing the position of welding torch. For inspection, applied AWS A5.20 E70-1 among welding wires and fixed moving angles of torch, but controled the values of voltage and the position of welding. Also Automatic Feed Mechanism is used for exact movement of material, specimen is a piece of steel for general structures. By measuring and analyzing the configuration of sliced section and the values of welding leg length and welding throat after welding, the outcome about the changes turned out.

A study on the seam tracking in CO_2$ fillet welding by using an arc sensor (CO_2$ 용접에서 전기적인 아크신호를 이용한 수평 필릿 용접선 추적에 관한 연구)

  • 선채규;김재웅;나석주;조형석;최칠룡
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.70-78
    • /
    • 1990
  • The harsh nature of welding environments makes welding a prime candidate for process automation. Among the variety of welding processes available, gas metal arc welding is one of the most frequently used methods, primarily because it is highly suited to a wide range of applications, and also to automation. Automatic seam tracking method is one of the most demanded techniques for automatic control of arc welding. In this study a seam tracking system has been developed by using the welding arc itself as a sensor. This paper described the principle and experimental result of the arc sensor system, as well as the development and application of the automatic CO_2$ welding for the horizontal fillet welding. A basic problem in horizontal fillet welding is the prevention of hanging bead formation such as undercut at the vertical plate and overlap at the horizontal plate. To produce the symmetric bead shape, the relationship of bead shape to welding parameters(welding velocity, weaving width, weaving speed, tip to workpiece distance) was also investigated.

  • PDF

Development of Mobile Robot for Welding of Lattice Type - Mobile Speed Control and Seam Tracking Control - (격자형 용접 주행로봇의 개발 ( 제1보 : 주행제어 및 용접선 추적제어 ))

  • 감병오;전양배;강치정;주갑영;김상봉
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.34-36
    • /
    • 2000
  • It is difficult to realize automation of welding of lattice type in shipbuilding and assembly processing of shipbuilding and steel structures. Usually, the welding parts of lattice type are welded manually. So there are limitations in continuous and stable quality controls and in increase in productivity because the welding quality depends on worker's skill. That is, automation in welding is necessary. This paper shows shows the development results of a moblie robot for welding of lattice type. Specially. algorithms for its mobile speed and seam tracking controls are introduced.

  • PDF

A Shaving Shear-Welding Process for Overlapped Aluminum Plates (중첩된 알루미늄 판재의 셰이빙 전단접합에 관한 연구)

  • Shang, L.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.467-472
    • /
    • 2012
  • Shaving shear-welding is a solid-state welding process, which utilizes plastic deformation of surplus material. The solid-state nature of this process contributes to high integrity and strength of the weld. The objective of this study was to investigate the effects of process variables on the material flow patterns and identify the process condition for obtaining the best weld. FEM simulations were carried out along with experimental characterizations. The results showed the importance of the cutter angles and the overlap lengths, and helped attain the optimum shaving shear-welding die and the best process condition.