• 제목/요약/키워드: welding automation

검색결과 212건 처리시간 0.036초

AUTOMATIC MULTITORCH WELDING SYSTEM WITH HIGH SPEED

  • Moon, H.S;Kim, J.S.;Jung, M.Y.;Kweon, H.J.;Kim, H.S.;Youn, J.G.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.320-323
    • /
    • 2002
  • This paper presents a new generation of system for pressure vessel and shipbuilding. Typical pressure vessel and ship building weld joint preparations are either traditional V, butt, fillet grooves or have narrow or semi narrow gap profiles. The fillet and U groove are prevalently used in heavy industries and shipbuilding to melt and join the parts. Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be many hours. Although SAW and FCAW are normally a mechanized process, pressure vessel and ship structures welding up to now have usually been controlled by a full time operator. The operator has typically been responsible for positioning each individual weld run, for setting weld process parameters, for maintaining flux and wire levels, for removing slag and so on. The aim of the system is to develop a high speed welding system with multitorch for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. To achieve this, a laser vision sensor, a rotating torch and an image processing algorithm have been made. Also, the multitorch welding system can be applicable for the fine grained steel because of the high welding speed and lower heat input compare to a conventional welding process.

  • PDF

System integration of automatic welding robot for assembly line in shipbuilding (ICCAS2005)

  • Kim, Byung-Su;Park, Jin-Hyung;Park, Young-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1395-1399
    • /
    • 2005
  • Lately, the demand for automation in the industries has increased and automation system has continuously installed in various industrial fields. But automation for shipbuilding industries is more difficult than others. Because we must cope with diverse ship types and owner's various requirements. Nevertheless, for the past several years a steady development on welding robot for shipbuilding has been going on. Existing automatic welding robots are operated separately and do not communicate with each other. In the existing facilities, although a unit of robot has a good performance, and if all of units are not operated systematically, we are not satisfied with results of our system. So we suggest an integration and operation method of system units. System integration methods applied to our system have in many cases lead to lower cost and shorter lead time.

  • PDF

Pulse TIG welding: Process, Automation and Control

  • Baghel, P.K.;Nagesh, D.S.
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.43-48
    • /
    • 2017
  • Pulse TIG (Tungsten Inert Gas) welding is often considered the most difficult of all the welding processes commonly used in industry. Because the welder must maintain a short arc length, great care and skill are required to prevent contact between the electrode and the workpiece. Pulse TIG welding is most commonly used to weld thin sections of stainless steel, non-ferrous metals such as aluminum, magnesium and copper alloys. It is significantly slower than most other welding techniques and comparatively more complex and difficult to master as it requires greater welder dexterity than MIG or stick welding. The problems associated with manual TIG welding includes undercutting, tungsten inclusions, porosity, Heat affected zone cracks and also the adverse effect on health of welding gun operator due to amount of tungsten fumes produced during the welding process. This brings the necessity of automation. Hence, In this paper an attempt has been made to build a customerized setup of Pulse TIG welding based on through review of Pulse TIG welding parameters. The cost associated for making automated TIG is found to be low as compared to SPM (Special Purpose machines) available in the market.

레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발 (Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function)

  • 박영환
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

토치 회전식 자동용접 시스템의 용접공정변수 최적선정 (Optimum-selection in the Welding Process Variable for Torch-rotation Method of Automation Welding-machine System)

  • 김재열
    • 한국생산제조학회지
    • /
    • 제6권2호
    • /
    • pp.92-101
    • /
    • 1997
  • The purpose of this welding process of the exclusive welding-machine using welding torch-rotation type is to develop a mechanism which can solve the problem of twisting of welding wires and cables. The technique was developed by revising the torch position and smooth controlling of both the normal and reverse rotation. Some of the advantages of using the torch-rotation type apply to the work-rotation technique are the practical uses of increased work space and link work with the factory automation system. Do apply the welding process, I designed and made a special unit so called torch part in order to solve the problems of kinematical. And I made a control panel which can manipulate the progress of the entire process at the work shop. Even if it will be applied to another kind of axle casing's welding work, this process can be utilized if other sizes of the fixed pin and work part is produced and changed. The development of this exclusive welding-machine could reduce the manpower of skilled welding labor and increase productivity and better quality product in comparison to the handmade product.

  • PDF

점용접 및 아크용접 겸용 로봇 자동화시스템 개발 (Development of Spot Welding and Arc Welding Dual Purpose Robot Automation System)

  • 이용중;김태원;이형우
    • 한국기계가공학회지
    • /
    • 제3권4호
    • /
    • pp.73-80
    • /
    • 2004
  • A dual purpose robot automation system is developed for both arc welding and spot welding by one robot within a cell. The need for automation of both arc welding and spot welding processes is urgent while the production volume is not so big as to accommodate separate station for the two processes. Also, space is too narrow for separate station to be settled down in the factory. A spot welding robot is chosen and the function for arc welding are implemented in-house at cost of advanced functions. For the spot welding, a single pole type gun is used and the robot has to push down the plate to be welded, which causes the robot positioning error. Therefore, position error compensation algorithm is developed. The basic functions for the arc welding processes are implemented using the digital I/O board of robot controller, PLC, and A/D conversion PCB. The weaving pattern is taught in meticulously by manual teach. A fixture unit is also developed for dual purpose. The main aspects of the system is presented in this paper especially in the design and implementation procedure. The signal diagrams and sequence logic diagrams are also included. The outcome of the dual purpose welding cell is the increased productivity and good production stability which is indispensable for production volume prediction. Also, it leads to reduction of manufacturing lead time.

  • PDF

스포트 및 아크 용접 겸용 로보트 시스템의 개발 (On the Development of Spot and ARC Welding Dual-Purpose Robot System)

  • 유범상;이용중;이양범
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.13-19
    • /
    • 1995
  • A dual purpose robot automation system is developed for both arc welding and spot welding by one robot within a cell. The need for automation of both arc welding and spot welding processes is urgent while the production volume is not so big as to accommodate separate stations for the two processes. Also, space is too narrow for separate stations to be settled down in the factory. A spot welding robot is chosen and the functions for arc welding are implemented in-house at cost of advanced functions. For the spot welding, a single pole type gun is used and the robot has to push down the plate to be wolded, which causes the robot positioning error. Therefore, position error compensation algorithm is developed. The basic functions for the arc welding processes are implemented using the digital I/O board of robot controller, PLC, and A/D conversion PCB. The weaving pattern is taught in meticulously by manual teach. A fixture unit is also developed for dual purpose. The main aspects of the system is presented in this paper especially in the design and implementation procedure. The signal diagrams and sequence logic diagrams are also included. The outcome of the dual purpose welding cell is the increased productivity and good production stability which is indispensable for production volume prediction. Also, it leads to reduction of manufacturing lead time.

  • PDF

조선 대조립 용접라인의 CAD/CAM 시스템 적용 (A Dedicated CAM for Welding Automation System in Assembly Line at Shipyards)

  • 김은중;이시열;김병수;박진형;박영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1757-1762
    • /
    • 2003
  • For coping with various ship types easily, welding automation using CAD/CAM is demanded and and developed. In this paper we propose a dedicated CAM system which generates MACRO files to control robot manipulators. The paper contains CAD interface, virtual simulation, macro generation and job schedulling. At first, it defines and extracts weldline from CAD data, and generates proper MACRO programs. And it obtains optimum job schedules. This system removes the manual work, and consequently reduces the overall lead time. And it reduces costs and time for developing robot welding programs. This can be expanded to virtual factory simulation technology. Moreover, it is possible to apply this system for automation of Cutting and Painting

  • PDF

음향 신호 분석에 의한 GMAW의 특성분석 (The Analysis of Characteristics of GMAW using Sound Signal)

  • 조택동;양상민;양성빈
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 춘계학술발표대회 개요집
    • /
    • pp.65-67
    • /
    • 2002
  • The gas metal arc welding(GMAW) is regarded as one of the best candidate for welding automation in industrial joining application. It is important to monitor the weld quality for the high performance of weld automation. The measured analog signal is frequency analyzed by digital signal process method. In order to observe the welding phenomena and control welding condition, arc light, voltage, and current are measured at the same time. They are analyzed and compared with arc sound. for these experiments, a power source of constant voltage characteristics was used in the pure metal transfer mode.

  • PDF

고속 다전극 자동 용접 시스템 (Automatic Multi-torch Welding System with High Speed)

  • 문형순;고성훈;김용백
    • Journal of Welding and Joining
    • /
    • 제25권2호
    • /
    • pp.49-54
    • /
    • 2007
  • Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional welding processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be required many hours. The aim of this paper is to develop a high speed welding system with multi-torch and laser vision sensor for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. It was shown that the developed laser vision sensor and analysis of arc blow for multi-torch were effective for multi-pass seam tracking and stable arc. A new automated multi-torch welding systems for thick wall applications has been proved in several production lines.