• Title/Summary/Keyword: weld strength

Search Result 857, Processing Time 0.023 seconds

The effects of PWHT on the toughness of weld HAZ in Cu-containing HSLA-100 steel (Cu를 함유한 HSLA-100강 용접 열 영향부의 인성에 미치는 후열처리의 영향)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.55-64
    • /
    • 1995
  • A study was made to examine the effects of postweld heat treatment(PWHT) on the toughness and microstructures in the weld heat affected zone(HAZ) of Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulate the weld HAZ. The details between toughness and PWHT of HAZ were studied by impact test, optical microscopy(O.M.), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC). The decrease of HAZ toughness in single thermal cycle comparing to base plate is ascribed to the coarsed-grain formed by heating to 1350.deg.C. The increase of HAZ toughness in double thermal cycle comparine to single thermal cycle is due to the fine ferrite(.alpha.) grain transformed from austenite(.gamma.)formed by heating to .alpha./.gamma. two phase region. Cu precipitated during aging for increasing the strength of base metal is dissolved during single thermal cycle to 1350.deg.C and is precipitated little on cooling and heating during subsequent weld thermal cycle. It precipitates by introducing PWHT. Thus, the decrease of toughness in triple thermal cycle of $T_{p1}$ = 1350.deg.C, $T_{p2}$ = 800.deg.C and $T_{p3}$ = 500.deg.C does not occur owing to the precipitation of Cu. The behaviors of Cu=precipitates in HAZ is similar to that in base plate. PWHT at 550.deg.C shows highest hardness and lowest toughness, whereas PWHT at 650.deg.C shows reasonable toughness, which improves the toughness of as-welded state.state.

  • PDF

Effect of Moisture in Arc Welding Electrode on Mechanical Properties of Weld Metal (아아크 용접봉 피복제 의 함수량 이 용접금속 의 기계적 성질에 미치는 영향)

  • 윤희만;김연식;박종은
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 1984
  • Moisture content in the coating of an electrode is known to cause defects such as porosities, fish eyes and cracks in the weld metal, however, quantitative relationship between them is not clearly understood. In this study widely consumed and the most common type of arc welding rods such as ilmenite and low hydrogen type were chosen for the investigation, and attempts were made to correlate the relationship between the mechanical properties and gas contents when welding was carried out with electrodes of various moisture contents. As the relative humidity changed from 70% to 92%, it was determined that moisture content to reach saturation was in the range of 0.6~6.8%. As the moisture content in the electrode coating was increased, the amount of gaseous components (H, O, N) in the weld metal was accordingly increased, especially diffusible hydrogen showed prominent effect, i.e. it increased proportionally to the increase of the moisture content. The mechanical properties of the weld metal was observed to become more inferior as the diffusible hydrogen was greater. It was determined for ilmenite type of electrode that the increase of hydrogen content was approximately 1.8ml per unit weight percent increase of moisture and also tensile strength resulted lowering from $45.3kg/\textrm{mm}^2$ to $42.7kg/\textrm{mm}^2$ as moisture content increased from 0.7% to 6.8%. For low hydrogen type the increase of the hyrogen was about 2.4ml per unit percent of moisture and tensile strength decreased from $63.0kg/\textrm{mm}^2$ to $53.8kg/\textrm{mm}^2$ particularly in the region of moisture content 0.1~4.2%.

  • PDF

A Study on the High Temperature Tensile Characteristics of Lap Weld of 15Cr Ferritic Stainless Steels (15Cr 페라이트계 스테인리스강의 겹침용접부 고온인장 특성에 관한 연구)

  • Lee, Young-Gi;Lee, Gyeong-Cheol;Kim, Jae-Seong;Han, Do-Seok;Oh, Seung-Taek;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.60-65
    • /
    • 2008
  • Ferritic stainless steels of the 400 series have been available for automotive exhaust system, heat exchanger, radiater etc. in various industrial because heat resistance, corrosion resistance and strength are excellent. Especially, automotive exhaust system is required good heat resistance because typical temperature of exhaust system exposed during operation of engine is reach up to $800^{\circ}C$. However, research for effect of high temperature in ferritic stainless steels is not enough. In this study, high temperature tensile properties of lap weld of ferritic stainless steels(STS 429) were investigated. In accordance with heat input, lap welds had been produced and were evaluated at high temperature($800^{\circ}C$) to compare high temperature tensile properties. In addition, room temperature tensile tests were carried out for non-aging and aging specimens. As a result of R.T tensile test, non-aging specimens were fractured in base metal except for low heat input specimen and aging specimens were fractured in weld metal. Also high temperature tensile test were carried out by aging specimen. After high temperature tensile test, fracture of aged specimen was occurred in base metal except for low heat input specimen. Fracture surface of low heat input specimen in weld metal was confirmed as brittle fracture with observation using scanning electron microscope(SEM). Significant decrease in ultimate tensile strength (between 82 and 85%) was observed for aged ferritic stainless steels(STS 429) when tested at high temperature.

A Study on the Fatigue Strength of Lap Weld of LNG Tank (LNG탱크 겹침용접부의 피로강도에 관한 연구)

  • Kim, Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.29-35
    • /
    • 1999
  • At the design of Mark III membrane type LNG tank, an analytical and experimental approach on the fatigue strengths of membrane and its welds are very important in order to assist designers and surveyors. In this study, fatigue tests of lap weld of Mark III membrane type LNG tank were carried out and cumulative damage factor was calculated in order to estimate the fatigue life by probability density function and rule methods. It contained the following tests and reviews : 1) The fatigue tests of lap weld of stainless steel according to statistical testing method recommended by JSME, 2)Preparation of S-N curve for lap welds considering the statistical properties of the results of fatigue tests. 3) Procedure for estimating the initiation life of fatigue crack of lap welds under variable loads by the rule lf classification society and probability density function, 4) Guideline for inspection of lap welds fo membrane type LNG tank.

  • PDF

Effects of PWHT on Weld Metal Properties of YS 460 MPa Steels for Ship and Offshore Structures (선박·해양 구조물용 YS 460 MPa 강재의 용접금속 특성에 미치는 PWHT의 영향)

  • Kang, Chang-Yong;Jeong, Sang-Hoon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.75-79
    • /
    • 2014
  • This paper has an aim to study the effect of PWHT(for 140min. at $600^{\circ}C$) on FCAW weld metal properties (tensile, charpy impact and CTOD value) of YS 460 MPa steels for ship and offshore structures. On the basis of these study, it was found that strength was decreased and elongation was increased by PWHT. These phenomenon resulted from the reduction of acicula ferrite volume fraction by grain growth. Also, Charpy impact and CTOD value were decreased by PWHT. These phenomenon resulted from grain growth. Because the grain boundary grown by PWHT can play a role as crack initiation site and make the crack propagate more easily. Although weld metal properties were decreased by PWHT, tensile and impact properties could meet the class societies requirements for welds of YS 460 MPa steel, but decrease of fracture toughness need to be consider seriously.

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

Optimization of Friction Welding for Crank Shaft Steels and Its Real Time AE Evaluation (크랭크 샤프트강재의 마찰용접 최적화와 AE 실시간 평가)

  • Oh, Sae-Kyoo;Choi, Hei-Young;Kong, Yu-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.98-104
    • /
    • 1999
  • The crank shafts need anti-corrosion materials. So STS 304 is the essential material to manufacture this shaft. However, it costs more to manufacture the shafts by using only STS 304 than welding of STS 304 to other carbon steels. And it has been difficult to weld this sort of dissimilar materials. They could be unstable in the quality by the conventional arc welding. And also they have a lot of technical problems in manufacturing. But by the friction welding technique, it will be able to be made without such problems. Then, this study aimed not only to develop the optimization of dissimilar friction welding of crank shafts steels of STS 304, SM35C, but also to develop the application technique of the acoustic emission to accomplish in-process real-time quality(such as tensile) evaluation during friction welding of the shafts by the AE technique.

  • PDF

The Analysis of Circumference Through-Wall Cracked Pipe Considering Weld Characteristic (용접부 강도불균질을 고려한 원주방향관통균열 배관의 파괴역학 해석법)

  • Park, Bo-Gyu;Oh, Chang-Kyun;Kim, Yun-Jae;Kim, Young-Jin;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.31-36
    • /
    • 2004
  • Defective components of interest include not only homogeneous components, but also components with weldments where tensile properties vary across the weldment. Noting that the region near the weldment is the most vulnerable place for crack initiation and subsequent growth, defect assessment methods for homogeneous structure. Moreover, weldment width and crack location also affects the deformation and fracture behavior of the welded joints. These weld characteristics can evaluate using plastic limit load. So in this paper, evaluate plastic limit load both full circumference part-throughwall cracked pipes and circumference through-wall cracked pipes considering weld characteristics. And using evaluate results, proposed J-integral and crack opening displacement(COD) estimate method based on reference stress method.

  • PDF

A Study on the Characteristics of Zr-4 End Cap Welded Joints Using Resistance Upset Welding (저항업셋 용접법을 이용한 Zr-4 End Cap용접부의 특성에 관한 연구)

  • 박철주;김형수;이영호;강원석
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.240-249
    • /
    • 1992
  • The objective of this study is to investigate the characteristics of welded joints on the Zircaloy-4 resistance upset welding for HWR(Heavy Water reactor)fuel rods. To estimate the characteristics of welded joints, the various tests were performed on the test coupons systematically with a wide range of each welding parameters in terms of a tensile test, burst test, knoop hardness test and metallography. Major results obtained in this study are as follows: 1. The tube and machined with 120.deg. projection was the reliable weld joint design for the nuclear fuel rod end cap welding. 2. As the weld current and the amount of upset increased linearly with increasing welding main heat input, it could make an estimate of their variation in accordance with the phase shift control. 3. It was found that an increase in squeeze force has an effect on the upset contour of welded joint because the amount of upset were increased by the change of squeeze force.

  • PDF