• Title/Summary/Keyword: weld simulation

Search Result 196, Processing Time 0.025 seconds

Fatigue Life Estimation of Welded Joints considering Statistical Characteristics of Multiple Surface Cracks (복수 표면균열의 확률적 특성을 고려한 용접부 피로수명 평가)

  • Han, Jeong Woo;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1472-1479
    • /
    • 2005
  • Multiple surface crack distributed randomly along a weld toe influences strongly on the fatigue crack propagation life of welded joint. It is investigated by using statistical approaches based on series of systematic experiments. From the statistical results, initial crack numbers and its locations follow the normal distribution, and the probability of initial crack depths and lengths can be described well by tile Weibull distribution. These characteristics are used to calculate the fatigue crack propagation life, in which the mechanisms of mutual interaction and coalescence of the multiple cracks are considered as well as the Mk-factors obtained from a parametric study on the crack depths and lengths. The automatic calculation is achieved by the NESUSS, where the parameters such as the number, location and size of the cracks are all treated as random variables. The random variables are dealt through the Monte-Carlo simulation with sampling random numbers of 2,000. The simulation results show that the multiple cracks lead to much shorter crack propagation life compared with those in single crack situation. The sum of the simulation and tile fatigue crack initiation life derived by the notch strain approach agrees well with the experiments.

A Study on Prediction of Nugget Diameter by Resistance Spot Welding Finite Element Analysis of High Tensile Steel (SGAFC 780) (고장력 강판(SGAFC780)의 저항 점 용접의 유한요소해석을 통한 너깃 직경 예측)

  • Lee, Cheal-Ho;Kim, Won Seop;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.144-150
    • /
    • 2019
  • In this study, resistance spot welding was performed using a high tensile steel plate SGAFC 780. The shear tensile strength, fracture profile, nugget diameter, and simulation were compared according to the conditions. After the nugget diameter calibration, the minimum diameter of welding was more than 4.3mm when the welding current was 8kVA or more. At 9kVA and above 10kVA, the minimum nugget diameter of 4.3mm was satisfied. On the other hand, due to the high current and time, the fly phenomenon occurred and the deep indentation remained. An evaluation of the weldability confirmed that there was an interval that was evaluated as weld failure due to the creep phenomenon, which satisfied the tensile shear strength and minimum nugget diameter. On the other hand, areas that have sufficient load bearing capacity even when drift has occurred were also identified. The simulation results show that the error rate was less than 4.2% when comparing the nugget diameter in the simulation and the experimental results in the appropriate weld zone, and confirmed the reliability of the simulation.

Dynamic behavior of GMA considering metal transfer (금속이행을 고려한 GMA 용접 시스템의 동특성 해석)

  • 박세홍;김면희;강세령;최상균;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.565-568
    • /
    • 2002
  • Welding variables and conditions in gas metal arc welding (GMAW) effect on the weld quality and productivity, extensive research efforts have been made to analyze the welding variables and conditions. In this study dynamic behavior of GMAW system is investigated using the characteristic equations of the power supply, wire and welding arc. Characteristic equation of wire is modified to include the effect of droplets attached at the electrode tip. The dynamic characteristics of arc length, current, voltage with respect to the step, ramp inputs of CTWD was simulated, seam tracking procedure using arc sensor was simulated with variable V-Groove geometries and weaving frequencies. From results of simulation, some predictions about dynamic characteristics of GMAW and welding process are available. The proposed simulator and results appear to be utilized to determine the proper welding conditions, to be improved by considering power supply dynamic characteristics.

  • PDF

Simulation of Thick Plate Preheating Process Using Induction Heating (유도가열을 이용한 후판 예열공정 시뮬레이션)

  • Oh, Yong Hee;Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1017-1021
    • /
    • 2015
  • Induction heating has been applied to the preheating process in various industrial fields. It has been used as a simple device structure, limiting the heating zone through controlled variables, and free-welding positions. It would be helpful to weld thick plates with arc welding such as GMAW. The induction heating process is well suited to this process. In this study, in order to find suitable induction heating parameters, a simulation was conducted with multi physics S/W. Three kinds of material were heated by induction coils designed specially for thick plate. Consequently, steel and nimonic alloy were the most efficient materials for preheating by induction. It can be concluded that the induction heating process is a good method for preheating the thick plate.

Simulation of heat flow for rectangular electrodes (사각형 전극에서의 열유동 해석)

  • 신윤섭;박수웅;나석주
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.62-69
    • /
    • 1990
  • Being focused on the recent studies that the fatigue strength of resistance spot weldmentes can be improved by using ellipsoidal weld nuggets, the voltage and temperature distribution in resistance spot weldments were simulated for the various rectangular electrodes which had the different aspect ratio of the contact area. Because the electrode shape was not axi-symmetric, the solution domain for simulation should be three dimensional. A series of experiments were carred out to verify the analytically obtained temperature distribution in the weldment. From the calculational and experimental results, it could be revealed that the nugget took the form of ellipsoid, while both results showed a considerable discrepancy for the high aspect ratio.

  • PDF

A Study on the Prediction and Control of Welding Deformation of the BRACKET TILT in Automotive Parts (I) - Experimental Examination- (자동차 부품 BRACKET TILT의 용접변형 예측 및 제어에 관한 연구 (I) - 실험적 검토-)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.97-103
    • /
    • 1998
  • The bracket tilt among automobile parts is weld parts which construct the column assembly bracket tilt of equipments and accurate dimension after welding is more essential than weldment strength. By the way, it is insufficient that systematic study about this parts which have an importance on welding deformation. The reason is that welding deformation is complex problem with shape, size, material of parts and welding sequence, conditions etc. For reduction and removal of welding deformation, therefore, it is necessary that the security of welding deformation data and systematic examination about equipment, costs, work environment, manufacturing process etc. It is all the better that the prediction of welding deformation using simulation of welding process by FEA is supplemented. In this study, the countermeasure for this welding deformation of bracket tilt is brought up through experimental inspection before the choice of the optimum welding conditions with minimum welding deformation by simulation of welding process.

  • PDF

Development of Precise Shearing Mechanism on Thin Sheet for Laser Welding (Analysis of Precise Shearing Process using FEM (레이저 용접을 위한 박판재의 정밀 전단 메카니즘 개발 (유한요소법을 이용한 정밀 전단 공정해석))

  • 표창률;전병희;조명래
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 1999
  • Recently, Tailor Welded Blank (TWB) is widely used in automotive industry since the transformation characteristic of its material can be changed. However, clearance between welding surfaces becomes the important factor which affect the quality of the laser weld, causing difficulties in preparing the sheet. The objective of this paper is to systematically evaluate the effects of previously presented fracture criterion and shearing condition on precise mechanical shearing simulation result. For this purpose, a parametric study was peformed to investigate the effect of finite element size and fracture criterion on simulation result. Also, in order to predict the optimum shearing condition, effect of shearing conditions such as clearance and punch radius on the shear plane shape was evaluated.

  • PDF

Axial Impact Collapse Analysis of Spot Welded Hat and Double-hat Shaped Section Members Using an Explicit Finite Element Code

  • Cha, Cheon-Seok;Kim, Young-Nam;Kim, Sun-Kyu;Im, Kwang-Hee;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.32-38
    • /
    • 2002
  • The purpose of this study is to analyze the collapse characteristics of widely used spot welded section members (hat and double hat section, nembers of vehicles) which possess the greatest energy absorbing capacity In an axial impact collapse. This study also suggests how the collapse load and deformation mode are obtained under impact. In the program system presented in this study, an explicit finite element code, LS-DY7A3D, is adopted for simulating complicated collapse behavior of the hat and double hat shaped section members with respect to section dimensions and spot weld pitches. Comparing the results with experiments, the simulation has been verified under a velocity of 7.19 m/sec (impact energy of 1034J)

Analysis of Keyhole Formation and Stability in Laser Spot Welding (레이저 점 용접의 키홀 발생과 안정성에 대한 해석)

  • 고성훈;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.484-490
    • /
    • 2002
  • The formation and stability of stationary laser weld keyholes were investigated using a numerical simulation. The effect of multiple reflections in the keyhole was estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution were calculated numerically. In the simulation, the keyhole was formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure opposed cavity formation. A transition mode having the geometry of the conduction mode with keyhole formation occurred between the conduction and keyhole modes. At laser powers of 500W and greater, the protrusion occurred on the keyhole wall, which resulted in keyhole collapse and void formation at the bottom. Initiation of the protrusion was caused mainly by collision of upward and downward flows due to the pressure components, and Marangoni flow had minor effects on the flow patterns and keyhole stability.bility.

Simulation of Ultrasonic Beam Focusing on a Defect in Anisotropic, Inhomogeneous Media

  • Jeong, Hyun-Jo;Cho, Sung-Jong;Erdenetuya, Sharaa;Jung, Duck-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.635-641
    • /
    • 2011
  • In ultrasonic testing of dissimilar metal welds, application of phased array technique in terms of incident beam focusing is not easy because of complicated material structures formed during the multi-pass welding process. Time reversal(TR) techniques can overcome some limitations of phased array since they are self-focusing that does not depend on the geometrical and physical properties of testing components. In this paper, we test the possibility of TR focusing on a defect within anisotropic, heterogeneous austenitic welds. A commercial simulation software is employed for TR focusing and imaging of a side-drilled hole. The performance of time reversed adaptive focal law is compared with those of calculated focal laws for both anisotropic and isotropic welds.