• 제목/요약/키워드: weld metal

검색결과 1,057건 처리시간 0.022초

이상계 스테인레스강 용접부의 응력부식균열에 관한 연구 (The variation of SCC resistance in duplex stainless steel weldment)

  • 김충언;강춘식;김희진
    • Journal of Welding and Joining
    • /
    • 제5권4호
    • /
    • pp.36-46
    • /
    • 1987
  • The impact toughness and SCC resistance of duplex stainless steel weldment made by GTAW, GMAW and SMAW processes was studied. The impact toughness of GTA weld metal was higher than that of GMA weld metal which contained more ferrite phase than GTA weld metal. The impact toughness of SMA weld metal was the lowest due to the harmful effect of inclusions inspite of richness of more ductile austenite phase. From these facts, it can be concluded that the important factors determining the weld metal toughness were the amount of ferrite phase and the cleaness of weld metal. While the SCC resistance of SMA weld metal was lower than that of base metal and nay other weld metal, the SCC resistance of GMA and GTA weld metal was higher than that of base metal but that of all the HAZ's were lower than that of base metal. Therefore, the impact toughness and SCC resistance of GTA and GMA weldment was pretty good as long as phase ratio was propertly controlled. Although the phase ratio was controlled, SMA weld metal could not get a good combination because the lack of shielding from the environment results in a high content of inclusions in weld metal.

  • PDF

동종금속용접이 이종금속용접부 잔류응력에 미치는 영향 평가 시 안전단 길이에 따른 효과 (Effects of Similar Metal Weld on Residual Stress in Dissimilar Metal Weld According to Safe End Length)

  • 송태광;전윤배;오창영;배홍열;김윤재;이상훈;이경수;박치용
    • 대한기계학회논문집A
    • /
    • 제33권7호
    • /
    • pp.664-672
    • /
    • 2009
  • Nozzle in nuclear power plant is connected to pipe using safe end. Dissimilar metal weld between nozzle and safe end is followed by similar metal weld between safe end and pipe. And thus residual stress in dissimilar metal weld can be affected by similar metal weld. Similar metal weld impose bending stress on dissimilar metal weld, which is according to the length of safe end. In this study, simple nozzle model which covers various radius to thickness ratios was proposed to quantify residual stress in dissimilar metal weld based on finite element analyses. As a result, short length of safe end was proved to be more effective to mitigate residual stress in dissimilar metal weld and critical effective length of safe end is provided according to the radius to thickness ratio.

후판 용접부의 횡균열 발생 방지에 관한 연구(Ⅱ) (A Study on Prevention of Weld Transverse Crack for Thick Plate(Ⅱ))

  • 정호신;강성원
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.57-67
    • /
    • 1999
  • Welding is widely applicable and reliable process and is mainly adopted for fabricating heavy structures. Recently, weld metal transverse cracks in butt and fillet weld joint is a serious problem, and they must be eliminated for improving weld joint reliability. The weld metal transverse crack susceptibility of butt and fillet joint was carried out by cantilever type tensile crack testing jig and CTS test. In this view of point, this study investigated the potential factors for weld metal transverse crack. The main results obtained were as follows: 1. The content o fdiffusible hydrogen in weld metal played an important role for weld metal transverse cracks. 2. From cantilever type tensile crack tests, it was pointed out that the higher the diffusible hydrogen content and tensile restraint, the more susceptible to weld metal transverse craking. 3. The TSN(thermal severity number) and diffusible hydrogen were important factors for determining weld metal transverse cracks in fillet weld joints.

  • PDF

Fatigue Crack Propagation Behavior in Butt Weldment of SA106 Gr.C Main Steam Pipe Steel

  • Kim, Eung-Seon;Jang, Chan-Su;Kim, In-Sup
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.92-97
    • /
    • 1996
  • The fatigue crack propagation behavior in SA106 Gr.C main steam pipe weld joint was investigated in air environment. Crack growth rate tests were conducted on base metal and weld metal at load ratio of 0.1 and 0.3 and at frequency of 10Hz. The fatigue crack growth rates of the base metal and the weld metal were above the ASME reference line and the fatigue crack propagation rate of the weld metal was higher than those of the base metal. Fatigue crack growth rate increased with increasing the load ratio and the effect of the load ratio was more significant in the weld metal. The post weld heat treatment increased the fatigue crack growth rates of the base metal by reducing compressive residual stress and decreased those of the weld metal by reducing weld defects.

  • PDF

노즐 이종용접부 잔류응력에 미치는 동종용접의 영향 평가 (Evaluation of Similar Metal Weld Effects on Residual Stress of Nozzle Dissimilar Metal Weld)

  • 유승천;정재욱;장윤석;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.110-114
    • /
    • 2008
  • Determination of weld-induced residual stress has been an important issue in nuclear power industry because several failures were reported in dissimilar metal weld parts due to primary water stress corrosion cracking. In this context, a couple of remarkable round robin analyses were conducted to quantify the welding simulation variables and to establish optimized numerical analysis process. The purpose of the present research is to introduce welding simulation results for a safety and relief nozzle, which has a dissimilar metal weld part as well as a similar metal weld part. First, finite element analyses are carried out to calculate residual stresses at the inside of nozzle considering only dissimilar metal welding. Subsequently, residual stresses taking into account both the dissimilar and similar metal welding are computed. The similar metal weld effect is evaluated by compa

  • PDF

이상계 스테인레스 강 용접부의 인성과 내식성 거동 (Property differences between GTAW and SMAW duplex stainless steel weld metal)

  • 백광기;김희진;안상곤
    • Journal of Welding and Joining
    • /
    • 제4권3호
    • /
    • pp.58-71
    • /
    • 1986
  • Mechanical and corrosion property of duplex stainless steel weldments made by the GTAW and SMAW process were studied. Fracture toughness, general and local corrosion resistance of GTAW and SMAW weldments were evaluated in terms of Charpy V notch impact test, anodic polarization diagram, pitting corrosion rate, respectively. SMA weld metal showed much lower impact toughness and higher ductile-brittle transition temperature than GTA weld metal. Fractographic and EDX analysis on fracture surface of SMA weld metal demonstrated the existence of (Si, Ti), oxide in large amounts. Potentiodynamic anodic polarization diagram of GMA weld metal showed much lower passive current density than SMA weld metal in 4% $H_2/SO_4$ solution. And pitting corrosion rate test showed the same tendency. Relating the microstructure, chemistry and property, it can be concluded that GTA weld metal gives better toughness due to lower oxygen content, i.e. lower inclusion content, and better corrosion resistance due to higher Pitting Index(PI) than SMA weld metal.

  • PDF

후판 용접부의 횡균열 발생 방지에 관한 연구(I) (A Study on Prevention of Weld Transverse Crack for Thick Plate(I))

  • 정호신;엄동석;이해우
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.49-56
    • /
    • 1999
  • Welding is a reliable process and is mainly adopted for fabricating heavy structures. Recently, transverse cracks in the weld metal is serious problem, and they affect cost, efficiency, safety and joint reliability for various welded structures. In this view of point, this study investigated the potential factors for weld metal transverse crack. The main results obtained are as follows; 1) The content of diffusible hydrogen in the commercial flux cored are welding wire was remarkable change by manufacturer. 2) The diffusible hydrogen content was thd main factor for weld metal transverse cracks. 3) Weld metal was immune to transverse cracking under the condition of low diffusible hydrogen content of high restraint condition. 4) The factors for weld metal transverse crack would be the content of diffusible hydrogen and restraint of weld joint.

  • PDF

60kgf/$\textrm{mm}^2$급 C-MO계 와이어를 사용한 서브머지드 아크 용접금속 인성 및 작업성에 미치는 플럭스 조성의 영향 (Effect of Flux Composition on Weld Metal Toughness and Workability in Submerged Aye Welding with 60kgf/$\textrm{mm}^2$ Grade C-Mo Type Wires)

  • 방국수;안영호
    • Journal of Welding and Joining
    • /
    • 제14권6호
    • /
    • pp.93-100
    • /
    • 1996
  • Effect of a flux composition on weld metal toughness in submerged arc welding with 60kgf/$\textrm{mm}^2$ grade C-Mo type wires was investigated and interpreted in terms of weld metal microstructure and hardenability. Flux workability was also studied by characterizing a weld bead profile. Compared to other weld metals, .weld metal used alumina basic flux with nickel showed lowest oxygen content, highest hardenability and the most acicular ferrite. The highest impact toughness of that weld metal, however, was attributed to the tough matrix due to the nickel rather than to the larger amount of acicular ferrite. Manganese silicate flux had better workability than alumina basic flux, showing broader welding conditions resulting in a depth-to-width ratio of 0.5. The composition of oxides in the weld metal was dependent on the flux composition, showing MnO-SiO$_2$-TiO in manganese silicate flux and MnO-SiO$_2$-Al$_2$O$_3$-TiO in alumina basic flux. MnO-SiO$_2$composition in both oxides was similar to a tephroite.

  • PDF

COLD CRACK SUSCEPTIBILITY OF HIGH STRENGTH WELD METAL

  • Kim, H. J.;B. Y. Kang
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.266-272
    • /
    • 2002
  • This study reviews the factors controlling the weld metal cracking and shows the difference from those of HAZ cracking. It further reviews the recent progresses made in consumable design for improving the crack resistance in the high strength weld metal. Previously the controlling factors for weld metal cracking were regarded as weld metal strength, diffusible hydrogen and weld metal height. However an overall review presented in this article shows that the cold crack resistance can be improve significantly through the microstructural control and that an increase in tensile strength is not necessarily related to a decrease in the resistance to cold cracking.

  • PDF

유한요소법을 이용한 용접공정 모사 시 입열 방법에 따른 용접잔류응력의 영향 (Weld Residual Stress According to the Ways of Heat Input in the Simulation of Weld Process using Finite Element Analysis)

  • 양준석;박치용;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.98-103
    • /
    • 2008
  • This paper is to discuss distribution of welding residual stresses of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two dimensional (2D) thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed and fabrication data. On performing the welding analysis generally, the characteristics on the heat input and heat transfer of weld are affected on the weld residual stress analyses. Thermal analyses in the welding heat cycle process is very important process in weld residual stress analyses. Therefore, heat is rapidly input to the weld pass material, using internal volumetric heat generation, at a rate which raises the peak weld metal temperature to $2200^{\circ}C$ and the base metal adjacent to the weld to about $1400^{\circ}C$. These are approximately the temperature that the weld metal and surrounding base materials reach during welding. Also, According to the various ways of appling the weld heat source, the predicted residual stress results are compared with measured axial, hoop and radial through-wall profiles in the heat affected zone of test component. Also, those results are compared with those of full 3-dimensional simulation.

  • PDF