• Title/Summary/Keyword: weld joint of bimaterial

Search Result 2, Processing Time 0.017 seconds

Fatigue Crack Growth Characteristics on The Weld Joint of Bimaterial (이종재료 용접부의 피로균열진전 특성)

  • 권재도;김우현;박중철;배용탁;김중형
    • Proceedings of the KWS Conference
    • /
    • 1997.10a
    • /
    • pp.81-85
    • /
    • 1997
  • This paper was conducted the fatigue crack growth test on the base metal and weld joint of bimaterial(carbon-stainless steel), carbon steel and stainless steel. As the result, the fatigue crack growth rate of weld joint on the stainless-stainless steel is faster than stainless base metal, and weld joint on the carbon-carbon steel heat affected zone is slower than carbon base metal. And fatigue crack growth rate of carbon-stainless steel weld joint and heat affected zone is similar to the behavior of stainless base metal. In conclusion, weld joint of bimaterial is stable in the fatigue crack growth behavior.

  • PDF

A Study on the Fatigue Crack Growth Characteristics for the Weldment of Carbon steel-Stainless steel (탄소강-스테인리스강 용접부의 피로균열진전 특성에 관한 연구)

  • 권재도;김우현;김길수;박중철;배용탁;김중형
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.47-54
    • /
    • 1998
  • Various equipments in plants are welded with two different materials and it is required to investigate the effects of fatigue crack propagation on the neighborhood of a welded portion. The characteristics of fatigue crack growth in the base metal of carbon and stainless steel, in the carbon and stainless steel sides located in the neighborhood of welded portion (carbon/stainless steel), respectively and welded portion, are investigated. The results show that the crack growth in the welded portion (carbon/stainless steel) is an average value of the crack growths in the carbon and stainless steel respectively located in the neighborhood of the welded portion. It is found that the crack growth in the welded portion is not significantly different from those in the carbon and stainless steel sides. Hence it can be concluded that the structure welded with two different materials wold not impede the integrity based on the fatigue crack growth.

  • PDF