• Title/Summary/Keyword: weld connection

Search Result 83, Processing Time 0.019 seconds

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

Effect of post weld treatment on cracking behaviors of beam-column connections in steel bridge piers

  • Jia, Liang-Jiu;Ge, Hanbin;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.687-704
    • /
    • 2014
  • A great number of moment-resisting steel structures collapsed due to ductile crack initiation at welded beam-column connections, followed by explosive brittle fracture in the Kobe (Hyogoken-Nanbu) earthquake in 1995. A series of experimental and numerical studies on cracking behaviors of beam-column connections in steel bridge piers were carried out by the authors' team. This paper aims to study the effect of post weld treatment on cracking behaviors of the connections during a strong earthquake event. Experiments of three specimens with different weld finishes, i.e., as-welded, R-finish, and burr grinding, were conducted. The experimental results indicate that the instants of ductile crack initiation are greatly delayed for the specimens with R-finish and burr grinding finishes compared with the as-welded one. The strain concentration effect in the connection is also greatly reduced in the specimens with post weld treatment compared with the as-welded one, which was also verified in the tests.

Developing connection design rules in China

  • Shi, Yongjiu
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.141-158
    • /
    • 2005
  • The new version of Code for Design of Steel Structures (GB50017-2003) and other design standards in China were released over the last two years. Comparing with the previous version (GBJ17-88), many clauses covering the connection design have been revised. A number of additional provisions are supplemented to specify the design requirements for beam-column moment connections, as well as gusset plates for truss joints. In this paper, a summary on the design rules on connections specified in the current Chinese code is presented, and relevant commentary and background information is provided whenever appropriate. The design criteria governing weld and bolt resistance is examined and reviewed. Moreover, several issues such as detailing requirements for stiffeners and end-plate connections are discussed.

Evaluating Seismic Performance of Steel Welded Moment Connections Fabricated with SN Steel (SN 강재가 사용된 강구조 용접모멘트접합부의 내진성능 평가)

  • Oh, Sang-Hoon;Choi, Young-Jae;Yoon, Sung-Kee;Lee, Dong-Gue
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.271-280
    • /
    • 2010
  • This study was programmed to fabricate a beam-to-column connection that is limited to a steel-welded moment connection with full-scale members, using SN steel. A cyclic seismic test was conducted of the nine specimens that were fabricated by choosing the test variable for the weld access hole geometry, connection design method, and RBS. From the test results, failure modes, the moment-drift behavior, and the strain distribution were provided. From the specimen material properties, the beam's nominal plastic flexural capacity and classified qualified connection as a special moment flame were calculated. By analyzing the skeleton part and the baushinger part, a range of strength-raising effects, and deformation ratios were provided, with which the seismic performance of the specimens were evaluated. The test results showed that the specimens eliminated their weld access holes that demonstrated higher seismic performance than the specimens' existing weld access holes, and that the WUF-W connection that was reinforced by the supplemental fillet weld around the shear tap that was fastened by five bolts demonstrated superior seismic performance.

An Experimental Study on Block Shear Fracture of Base Metal in Ferritic Stainless Steel Welded Connection (페라이트계 스테인리스강 용접접합부의 모재 블록전단파단에 관한 실험적 연구)

  • Kim, Tae Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.303-312
    • /
    • 2016
  • Many researches on the application of stainless steels as structural steels have been performed thanks to their material properties such as superior ductility and corrosion resistance. Ferritic stainless steels(STS430) with little or no nickel have been used increasingly in building structure because it is inexpensive compared to austenitic stainless steels(STS304) with nickel, but provide performances similar to the austenitic stainless steel. This paper deals with block shear fracture behavior of base metal in stainless steel welded connection. Although the block shear fracture behavior for welded connection due to stress triaxiality is different from that of bolted connection, the block shear strength of welded connection in current design specifications has been predicted based on that of bolted connection. The main parameters are weld length and welding process(Arc and TIG welds). The ultimate strengths of TIG welded specimens were higher than those of arc welded specimens and current design predictions by AISC, EC3 etc. were compared with test strengths.

Structural characteristics of welded built-up square CFT column-to-beam connections with external diaphragms

  • Lee, Seong-Hui;Yang, Il-Seung;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.261-279
    • /
    • 2010
  • Generally, a box tube, which is used for an existing square CFT structure, is made by welding four plates. The manufacturing efficiency of this steel tube is poor, and it also needs special welding technology to weld its internal diaphragm and the through diaphragm. Therefore, an interior-anchor-type square steel tube was developed using the method of cold-forming thin plates to prevent welding of the stress concentration position, and to maximize the section efficiency. And, considering of the flow of beam flange load, the efficiency of erection and the weldability of the diaphragm to thin walled steel column, the external diaphragm connection was selected as the suitable type for the welded built-up square CFT column to beam connection. And, an analytical study and tests were conducted to evaluate the structural performance of the suggested connection details and to verify the suggested equations for the connection details. Through this study, the composite effect of the internal anchor to concrete, the resistance and stress distribution of the connections before and after the existing column is welded to the beam, the effective location of welding in connection were analyzed.

An Experimental Study on Block Shear Strength of Carbon Steel Fillet Welded Connection with Base Metal Fracture (탄소강 용접접합부의 모재블록전단내력에 관한 실험적 연구)

  • Lee, Hwa-Young;Hwang, Bo-kyung;Lee, Hoo-Chang;Kim, Tea-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • An experimental study on the ultimate behaviors of the mild carbon steel (SPHC) fillet-welded connection is presented in this paper. Seven specimens were fabricated by the shielded metal arc welding (SMAW). All specimens failed by typical block shear fracture in the base metal of welded connections not weld metal. Block shear fracture observed in the base metal of welded connection is a combination of single tensile fracture transverse to the loading direction and two shear fractures longitudinal to the loading direction. Test strengths were compared with strength predictions by the current design equations and suggested equations by previous researchers. It is known that current design specifications (AISC2010 and KBC2016) and Oosterhof & Driver's equation underestimated overly the ultimate strength of the welded connection by on average 44%, 31%, respectively and prediction by Topkaya's equation was the closest to the test results. Consequently, modified equation is required to be proposed considering the stress triaxiality effect and material property difference on the block shear strength for base metal fracture in welded connections fabricated with mild carbon steel.

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection Type (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향에 관한 연구)

  • Lee, Cheol-Ho;Jeon, Sang-Woo;Kim, Jin-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This paper presents test results on eight reduced beam section(RBS) steel moment connections. The testing program addressed bolted versus welded web connection and panel zone(PZ) strength as key variables, Specimens with medium PZ strength were designed to promote energy dissipation from both PZ and RBS regions such that the requirement for expensive doublet plates could be reduced. Both strong and medium PZ specimens with a welded web connection were able to provide satisfactory connection rotation capacity for special moment-resisting frames. On the other hand, specimens with a bolted web connection performed poorly due to premature brittle fracture of the beam flange of the weld access hole. If fracture within the beam flange groove weld was avoided using quality welding, the fracture tended to move into the beam flange base metal of the weld access hole. Plausible explanation of a higher incidence of base metal fracture in bolted web specimens was presented. The measured strain data confirmed that the classical beam theory dose not provide reliable shear transfer prediction in the connection. The practice of providing web bolts uniformly along the beam depth was brought into question. Criteria for a balanced PZ strength improves the plastic rotation capacity while reduces the amount of beam distortion ore also proposed.

Cycllic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대(實物大) 시험)

  • Lee, Cheol Ho;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper summarized the results of a full-scale cyclic seismic testing on four reduced beam section (RBS) steel moment connections. Specifically, these tests addressed a bolted web versus a welded web connection and strong versus medium panel zone (PZ) strength as key test variables. Specimens with medium PZ strength were designed to promote balanced energy dissipation from both PZ and RBS regions, in order to reduce the requirement for expensive doubler plates. Both strong and medium PZ specimens with welded web connection were able to provide sufficient connection rotation capacity required of special moment-resisting frames. On the other hand, specimens with bolted web connection performed poorly due to premature brittle fracture of the beam flange at the weld access hole. Unlike the case of web-welded specimens, specimens with cheaper bolted web connection could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. No fracture occurred within the beam groove welds of any connection in this testing program. If fracture within the beam flange groove weld is avoided by using quality welding procedure as in this study, the fracture issue tends to move into the beam flange base metal at the weld access hole. Supporting analytical study was also conducted in order to understand the observed base metal fracture from the engineering mechanics perspective.