• Title/Summary/Keyword: weighted sum Pareto optimization

Search Result 17, Processing Time 0.027 seconds

Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGA-II for ride comfort and ride safety

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.469-479
    • /
    • 2018
  • The present research study utilizes a multi-objective optimization method for Pareto optimization of an eight-degree of freedom full vehicle vibration model, adopting a non-dominated sorting genetic algorithm II (NSGA-II). In this research, a full set of ride comfort as well as ride safety parameters are considered as objective functions. These objective functions are divided in to two groups (ride comfort group and ride safety group) where the ones in one group are in conflict with those in the other. Also, in this research, a special optimizing technique and combinational method consisting of weighted sum method and Pareto optimization are applied to transform Pareto double-objective optimization to Pareto full-objective optimization which can simultaneously minimize all objectives. Using this technique, the full set of ride parameters of three dimensional vehicle model are minimizing simultaneously. In derived Pareto front, unique trade-off design points can selected which are non-dominated solutions of optimizing the weighted sum comfort parameters versus weighted sum safety parameters. The comparison of the obtained results with those reported in the literature, demonstrates the distinction and comprehensiveness of the results arrived in the present study.

Adaptive Weighted Sum Method for Bi-objective Optimization (두개의 목적함수를 가지는 다목적 최적설계를 위한 적응 가중치법에 대한 연구)

  • ;Olivier de Weck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.149-157
    • /
    • 2004
  • This paper presents a new method for hi-objective optimization. Ordinary weighted sum method is easy to implement, but it has two significant drawbacks: (1) the solution distribution by the weighted sum method is not uniform, and (2) the method cannot determine any solutions that reside in non-convex regions of a Pareto front. The proposed adaptive weighted sum method does not solve a multiobjective optimization in a predetermined way, but it focuses on the regions that need more refinement by imposing additional inequality constraints. It is demonstrated that the adaptive weighted sum method produces uniformly distributed solutions and finds solutions on non-convex regions. Two numerical examples and a simple structural problem are presented to verify the performance of the proposed method.

Elite-initial population for efficient topology optimization using multi-objective genetic algorithms

  • Shin, Hyunjin;Todoroki, Akira;Hirano, Yoshiyasu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.324-333
    • /
    • 2013
  • The purpose of this paper is to improve the efficiency of multi-objective topology optimization using a genetic algorithm (GA) with bar-system representation. We proposed a new GA using an elite initial population obtained from a Solid Isotropic Material with Penalization (SIMP) using a weighted sum method. SIMP with a weighted sum method is one of the most established methods using sensitivity analysis. Although the implementation of the SIMP method is straightforward and computationally effective, it may be difficult to find a complete Pareto-optimal set in a multi-objective optimization problem. In this study, to build a more convergent and diverse global Pareto-optimal set and reduce the GA computational cost, some individuals, with similar topology to the local optimum solution obtained from the SIMP using the weighted sum method, were introduced for the initial population of the GA. The proposed method was applied to a structural topology optimization example and the results of the proposed method were compared with those of the traditional method using standard random initialization for the initial population of the GA.

Goal-Pareto based NSGA Optimization Algorithm (Goal-Pareto 기반의 NSGA 최적화 알고리즘)

  • Park, Jun-Su;Park, Soon-Kyu;Shin, Yo-An;Yoo, Myung-Sik;Lee, Won-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.108-115
    • /
    • 2007
  • This paper proposes a new optimization algorithm prescribed by GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm) whose result satisfies the user's needs and goals to enhance the performance of optimization. Typically, lots of real-world engineering problems encounter simultaneous optimization subject to satisfying prescribed multiple objectives. Unfortunately, since these objectives might be mutually competitive, it is hardly to find a unique solution satisfying every objectives. Instead, many researches have been investigated in order to obtain an optimal solution with sacrificing more than one objectives. This paper introduces a novel optimization scheme named by GBNSGA obeying both goals as well as objectives as possible as it can via allocating candidated solutions on Pareto front, which enhances the performance of Pareto based optimization. The performance of the proposed GBNSGA will be compared with that of the conventional NSGA and weighted-sum approach.

The Bees Algorithm with Weighted Sum Using Memorized Zones for Multi-objective Problem

  • Lee, Ji-Young;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.395-402
    • /
    • 2009
  • This paper presents the newly developed Pareto-based multi-objective Bees Algorithm with weighted sum technique for solving a power system multi-objective nonlinear optimization problem. Specifically, the Pareto-based Bees Algorithm with memorized zone has been developed to alleviate both difficulties from classical techniques and intelligent techniques for multi-objective problems (MOP) and successfully applied to an Environmental/Economic (electric power) dispatch (EED) problem. This multi-objective Bees Algorithm has been examined and applied to the standard IEEE 30-bus six-generator test system. Simulation results have been compared to those obtained using other approaches. The comparison shows the potential and effectiveness of the proposed Bees Algorithm for solving the multi-objective EED problem.

Pareto optimum design of laminated composite truncated circular conical shells

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.397-408
    • /
    • 2013
  • This paper deals with multiobjective optimization of symmetrically laminated composite truncated circular conical shells subjected to external uniform pressure load and thermal load. The design objective is the maximization of the weighted sum of the critical buckling load and fundamental frequency. The design variable is the fibre orientations in the layers. The performance index is formulated as the weighted sum of individual objectives in order to obtain optimal solutions of the design problem. The first-order shear deformation theory (FSDT) is used in the mathematical formulation of laminated truncated conical shells. Finally, the effect of different weighting factors, length-to-radius ratio, semi-cone angle and boundary conditions on the optimal design is investigated and the results are compared.

Combined Economic and Emission Dispatch with Valve-point loading of Thermal Generators using Modified NSGA-II

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.490-498
    • /
    • 2013
  • This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-point loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Furthermore, three different performance metrics such as convergence, diversity and Inverted Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve the CEED problem effectively.

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

A Simulation Optimization Method Using the Multiple Aspects-based Genetic Algorithm (다측면 유전자 알고리즘을 이용한 시뮬레이션 최적화 기법)

  • 박성진
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.71-84
    • /
    • 1997
  • For many optimization problems where some of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. Many, if not most, simulation optimization problems have multiple aspects. Historically, multiple aspects have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic algorithm (GA), however, is readily modified to deal with multiple aspects. In this paper we propose a MAGA (Multiple Aspects-based Genetic Algorithm) as an algorithm for finding the Pareto optimal set. We demonstrate its ability to find and maintain a diverse "Pareto optimal population" on two problems.

  • PDF

Multi-Objective Optimization of a Fan Blade Using NSGA-II (NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화)

  • Lee, Ki-Sang;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF