• 제목/요약/키워드: weighted similarity measures

검색결과 11건 처리시간 0.032초

APPLICATIONS OF SIMILARITY MEASURES FOR PYTHAGOREAN FUZZY SETS BASED ON SINE FUNCTION IN DECISION-MAKING PROBLEMS

  • ARORA, H.D.;NAITHANI, ANJALI
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.897-914
    • /
    • 2022
  • Pythagorean fuzzy sets (PFSs) are capable of modelling information with more uncertainties in decision-making problems. The essential feature of PFSs is that they are described by three parameters: membership function, non-membership function and hesitant margin, with the total of the squares of each parameter equal to one. The purpose of this article is to suggest some new similarity measures and weighted similarity measures for PFSs. Numerical computations have been carried out to validate our proposed measures. Applications of these measures have been applied to some real-life decision-making problems of pattern detection and medicinal investigations. Moreover, a descriptive illustration is employed to compare the results of the proposed measures with the existing analogous similarity measures to show their effectiveness.

다중레벨 벡터양자화 기반의 유사도를 이용한 자동 음악요약 (Automatic Music Summarization Using Similarity Measure Based on Multi-Level Vector Quantization)

  • 김성탁;김상호;김회린
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권2E호
    • /
    • pp.39-43
    • /
    • 2007
  • Music summarization refers to a technique which automatically extracts the most important and representative segments in music content. In this paper, we propose and evaluate a technique which provides the repeated part in music content as music summary. For extracting a repeated segment in music content, the proposed algorithm uses the weighted sum of similarity measures based on multi-level vector quantization for fixed-length summary or optimal-length summary. For similarity measures, count-based similarity measure and distance-based similarity measure are proposed. The number of the same codeword and the Mahalanobis distance of features which have same codeword at the same position in segments are used for count-based and distance-based similarity measure, respectively. Fixed-length music summary is evaluated by measuring the overlapping ratio between hand-made repeated parts and automatically generated ones. Optimal-length music summary is evaluated by calculating how much automatically generated music summary includes repeated parts of the music content. From experiments we observed that optimal-length summary could capture the repeated parts in music content more effectively in terms of summary length than fixed-length summary.

고의서에 나타난 경혈과 병증의 연관성 측정 및 시각화 - 침구자생경 분석 예를 중심으로 - (Measure of the Associations of Accupoints and Pathologies Documented in the Classical Acupuncture Literature)

  • 오준호
    • Korean Journal of Acupuncture
    • /
    • 제33권1호
    • /
    • pp.18-32
    • /
    • 2016
  • Objectives : This study aims to analyze the co-occurrence of pathological symptoms and corresponding acupoints as documented by the comprehensive acupuncture and moxibustion records in the classical texts of Far East traditional medicine as an aid to a more efficient understanding of the tacit treatment principles of ancient physicians. Methods : The Classic of Nourishing Life with Acupuncture and Moxibustion(Zhenjiu Zisheng Jing; hereinafter ZZJ) was selected as the primary reference book for the analysis. The pathology-acupoint co-occurrence analysis was performed by applying 4 values of vector space measures(weighted Euclidean distance, Euclidean distance, $Cram\acute{e}r^{\prime}s$ V and Canberra distance), which measure the distance between the observed and expected co-occurrence counts, and 3 values of probabilistic measures(association strength, Fisher's exact test and Jaccard similarity), which measure the probability of observed co-occurrences. Results : The treatment records contained in ZZJ were preprocessed, which yielded 4162 pathology-acupoint sets. Co-occurrence was performed applying 7 different analysis variables, followed by a prediction simulation. The prediction simulation results revealed the Weighted Euclidean distance had the highest prediction rate with 24.32%, followed by Canberra distance(23.14%) and association strength(21.29%). Conclusions : The weighted Euclidean distance among the vector space measures and the association strength among the probabilistic measures were verified to be the most efficient analysis methods in analyzing the correlation between acupoints and pathologies found in the classical medical texts.

퍼지적분을 이용한 내용기반 검색 사용자 의견 반영시스템 (Relevance Feedback for Content Based Retrieval Using Fuzzy Integral)

  • Young Sik Choi
    • 인터넷정보학회논문지
    • /
    • 제1권2호
    • /
    • pp.89-96
    • /
    • 2000
  • 영상의 유사성에 대한 사용자의 주관적인지를 학습하는 방법으로 relevance feedback 기술이 사용되며, 최근 들어 이에 대한 관심이 높아지고 있다. 대부분의 relevance feedback기술은 영상 유사성을 측정하는데 사용되는 특징이 서로 독립적이라는 가정하고 있으나, 이러한 가정은 유사성 판단을 모델링 하는데 있어서 상당한 제약을 두는 것이다. 이 논문에서는. 퍼지 측정과 Choquet 적분을 이용하여, 유사성 판단에 대한 보다 나은 모델링 방법을 제안하고, 이를 이용한 relevance feedback 알고리즘을 제안한다. 실험결과를 통하여, 기존의 가중치 평균 방식에 의한 relevance feedback보다 제안된 방식이 우수함을 보인다.

  • PDF

Entropy-based Similarity Measures for Memory-based Collaborative Filtering

  • Kwon, Hyeong-Joon;Latchman, Haniph
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제5권2호
    • /
    • pp.5-10
    • /
    • 2013
  • We proposed a novel similarity measure using weighted difference entropy (WDE) to improve the performance of the CF system. The proposed similarity metric evaluates the entropy with a preference score difference between the common rated items of two users, and normalizes it based on the Gaussian, tanh and sigmoid function. We showed significant improvement of experimental results and environments. These experiments involved changing the number of nearest neighborhoods, and we presented experimental results for two data sets with different characteristics, and results for the quality of recommendation.

Image Denoising via Fast and Fuzzy Non-local Means Algorithm

  • Lv, Junrui;Luo, Xuegang
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1108-1118
    • /
    • 2019
  • Non-local means (NLM) algorithm is an effective and successful denoising method, but it is computationally heavy. To deal with this obstacle, we propose a novel NLM algorithm with fuzzy metric (FM-NLM) for image denoising in this paper. A new feature metric of visual features with fuzzy metric is utilized to measure the similarity between image pixels in the presence of Gaussian noise. Similarity measures of luminance and structure information are calculated using a fuzzy metric. A smooth kernel is constructed with the proposed fuzzy metric instead of the Gaussian weighted L2 norm kernel. The fuzzy metric and smooth kernel computationally simplify the NLM algorithm and avoid the filter parameters. Meanwhile, the proposed FM-NLM using visual structure preferably preserves the original undistorted image structures. The performance of the improved method is visually and quantitatively comparable with or better than that of the current state-of-the-art NLM-based denoising algorithms.

Comparative Study on Similarity Measurement Methods in CBR Cost Estimation

  • Ahn, Joseph;Park, Moonseo;Lee, Hyun-Soo;Ahn, Sung Jin;Ji, Sae-Hyun;Kim, Sooyoung;Song, Kwonsik;Lee, Jeong Hoon
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.597-598
    • /
    • 2015
  • In order to improve the reliability of cost estimation results using CBR, there has been a continuous issue on similarity measurement to accurately compute the distance among attributes and cases to retrieve the most similar singular or plural cases. However, these existing similarity measures have limitations in taking the covariance among attributes into consideration and reflecting the effects of covariance in computation of distances among attributes. To deal with this challenging issue, this research examines the weighted Mahalanobis distance based similarity measure applied to CBR cost estimation and carries out the comparative study on the existing distance measurement methods of CBR. To validate the suggest CBR cost model, leave-one-out cross validation (LOOCV) using two different sets of simulation data are carried out. Consequently, this research is expected to provide an analysis of covariance effects in similarity measurement and a basis for further research on the fundamentals of case retrieval.

  • PDF

워드넷을 이용한 문서내에서 단어 사이의 의미적 유사도 측정 (Semantic Similarity Measures Between Words within a Document using WordNet)

  • 강석훈;박종민
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7718-7728
    • /
    • 2015
  • 단어 사이의 의미적 유사성은 많은 분야에 적용 될 수 있다. 예를 들면 컴퓨터 언어학, 인공지능, 정보처리 분야이다. 본 논문에서 우리는 단어 사이의 의미적 유사성을 측정하는 문서 내의 단어 가중치 적용 방법을 제시한다. 이 방법은 워드넷의 간선의 거리와 깊이를 고려한다. 그리고 문서 내의 정보를 기반으로 단어 사이의 의미적 유사성을 구한다. 문서 내의 정보는 단어의 빈도수와 단어의 의미 빈도수를 사용한다. 문서 내에서 단어 마다 단어 빈도수와 의미 빈도수를 통해 각 단어의 가중치를 구한다. 본 방법은 단어 사이의 거리, 깊이, 그리고 문서 내의 단어 가중치 3가지를 혼합한 유사도 측정 방법이다. 실험을 통하여 기존의 다른 방법과 성능을 비교하였다. 그 결과 기존 방법에 대비하여 성능의 향상을 가져왔다. 이를 통해 문서 내에서 단어의 가중치를 문서 마다 구할 수 있다. 단순한 최단거리 기반의 방법들과 깊이를 고려한 기존의 방법들은, 정보에 대한 특성을 제대로 표현하지 못했거나 다른 정보를 제대로 융합하지 못했다. 본 논문에서는 최단거리와 깊이 그리고 문서 내에서 단어의 정보량까지 고려하였고, 성능의 개선을 보였다.

최적 편이보정 기법의 선택을 통한 대표 전지구모형의 선정 (Selection framework of representative general circulation models using the selected best bias correction method)

  • 송영훈;정은성;성장현
    • 한국수자원학회논문집
    • /
    • 제52권5호
    • /
    • pp.337-347
    • /
    • 2019
  • 본 연구에서는 미래 기후예측을 위하여 활용되는 전지구모형(general circulation model, GCM) 중 우리나라에 적합한 대표 GCM을 선정하는 방법을 제시하였다. 이에 격자 기반 GCM 결과를 IDW (Inverse Distance Weighted) 방법을 사용하여 기상 관측소로 지점 규모로 상세화를 하여 관측강수와 비교하였다. GCM과 관측자료 사이의 편이를 보정하기 위하여 6가지 Quantile Mapping 방법과 Random Forest 기법을 사용하였고, 성능 지표를 비교하여 대표 편이보정방법을 선정하였다. 편이보정된 GCM 모의 결과에 대한 성능을 계산하고 다기준의사결정기법 중 하나인 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) 방법을 이용하여 가장 우수한 GCM을 선정하였다. 그 결과 편이보정방법을 NPT (Non-Parametric Transformation) 방법 중 EQ (Empirical Quantile) 방법이 선정되었고, TOPSIS 성능 평가 결과, GISS-E2-R이 가장 우수하였다. 그 다음으로 우수한 GCM을 순서대로 제시하면 MIROC5, CSIRO-Mk3-6-0, CCSM4 이었다. 향후 더 많은 GCM 자료를 이용한다면 보다 보편적인 결과를 도출할 수 있을 것으로 기대된다.

국내 연안 해역 선박 항적 군집화를 위한 항적 간 거리 척도 개발 연구 (Research on the Development of Distance Metrics for the Clustering of Vessel Trajectories in Korean Coastal Waters)

  • 이승주;이원희;민지홍;조득재;박현우
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.367-375
    • /
    • 2023
  • 본 연구에서는 국내 연안 해역 환경에서의 해상교통관제 서비스에 기여할 수 있는 항적 간 거리 척도를 개발하였다. 새로운 항적간 거리 척도는 전통적으로 위치 시계열 간의 유사도를 측정하는 데 활용되는 하우스도르프 거리(hausdorff distance)와 두 항적 간의 대지속력(Speed Over Ground, SOG)의 평균 간의 차이, 그리고 대지침로(Course Over Ground)의 분산 간의 차이를 가중합하여 설계되었다. 새로운 척도의 유효성을 검증하기 위하여 실제 AIS 항적 데이터와 병합 군집화 알고리즘을 활용한 기존 항적 간 거리 척도와의 비교 분석이 수행되었으며, 새로운 거리 척도를 활용한 항적 군집화 결과가 하우스도르프 거리(hausdorff distance), 그리고 다이내믹 타임 워핑 거리(Dynamic Time Warping distance) 등 기존 척도에 비해 항적 간 지리적 거리나 대지속도 및 대지침로 등 선박 거동 특성의 분포를 비슷하거나 그 이상의 수준으로 정교하게 반영하고 있음을 데이터 시각화로써 확인하였다. 정량적으로는 Davies-Bouldin 지표를 기준으로, 군집화 결과가 더욱 우수하거나 약간 낮은 수준을 기록한 한편, 거리 계산 효율성에서는 특히 우수함을 실증하였다.