• Title/Summary/Keyword: weighted similarity

Search Result 129, Processing Time 0.024 seconds

A bidirectional fuzy inference network for interval valued decision making systems (구간 결정값을 갖는 의사결정시스템의 양방향 퍼지 추론망)

  • 전명근
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.10
    • /
    • pp.98-105
    • /
    • 1997
  • In this work, we proesent a bidirectional approximate reasoning method and fuzzy inference network for interval valued decision making systems. For this, we propose a new type of similarity measure between two fuzzy vectors based on the Ordered Weighted Averaging (OWA) operator. Since the proposed similarity measure has a structure to give the extreme values by choosing a suitable weighting vector of the OWA operator, it can render an interval valued similarity value. From this property, we derive a bidirectional approximate reasoning method based on the similarity measure and show its fuzzy inference network implementation for the decision making systems requiring the interval valued decisions.

  • PDF

Comparative Study on Similarity Measurement Methods in CBR Cost Estimation

  • Ahn, Joseph;Park, Moonseo;Lee, Hyun-Soo;Ahn, Sung Jin;Ji, Sae-Hyun;Kim, Sooyoung;Song, Kwonsik;Lee, Jeong Hoon
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.597-598
    • /
    • 2015
  • In order to improve the reliability of cost estimation results using CBR, there has been a continuous issue on similarity measurement to accurately compute the distance among attributes and cases to retrieve the most similar singular or plural cases. However, these existing similarity measures have limitations in taking the covariance among attributes into consideration and reflecting the effects of covariance in computation of distances among attributes. To deal with this challenging issue, this research examines the weighted Mahalanobis distance based similarity measure applied to CBR cost estimation and carries out the comparative study on the existing distance measurement methods of CBR. To validate the suggest CBR cost model, leave-one-out cross validation (LOOCV) using two different sets of simulation data are carried out. Consequently, this research is expected to provide an analysis of covariance effects in similarity measurement and a basis for further research on the fundamentals of case retrieval.

  • PDF

Moving Objects Modeling for Supporting Content and Similarity Searches (내용 및 유사도 검색을 위한 움직임 객체 모델링)

  • 복경수;김미희;신재룡;유재수;조기형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.617-632
    • /
    • 2004
  • Video Data includes moving objects which change spatial positions as time goes by. In this paper, we propose a new modeling method for a moving object contained in the video data. In order to effectively retrieve moving objects, the proposed modeling method represents the spatial position and the size of a moving object. It also represents the visual features and the trajectory by considering direction, distance and speed or moving objects as time goes by. Therefore, It allows various types of retrieval such as visual feature based similarity retrieval, distance based similarity retrieval and trajectory based similarity retrieval and their mixed type of weighted retrieval.

  • PDF

Color Similarity Definition Based on Quantized Color Histogram for Clothing Identification

  • Choi, Yoo-Joo;Moon, Nam-Mee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.396-399
    • /
    • 2009
  • In this paper, we present a method to define a color similarity between color images using Octree-based quantization and similar color integration. The proposed method defines major colors from each image using Octree-based quantization. Two color palettes to consist of major colors are compared based on Euclidean distance and similar color bins between palettes are matched. Multiple matched color bins are integrated and major colors are adjusted. Color histogram based on the color palette is constructed for each image and the difference between two histograms is computed by the weighted Euclidean distance between the matched color bins in consideration of the frequency of each bin. As an experiment to validate the usefulness, we discriminated the same clothing from CCD camera images based on the proposed color similarity analysis. We retrieved the same clothing images with the success rate of 88 % using only color analysis without texture analysis.

  • PDF

Image Denoising via Fast and Fuzzy Non-local Means Algorithm

  • Lv, Junrui;Luo, Xuegang
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1108-1118
    • /
    • 2019
  • Non-local means (NLM) algorithm is an effective and successful denoising method, but it is computationally heavy. To deal with this obstacle, we propose a novel NLM algorithm with fuzzy metric (FM-NLM) for image denoising in this paper. A new feature metric of visual features with fuzzy metric is utilized to measure the similarity between image pixels in the presence of Gaussian noise. Similarity measures of luminance and structure information are calculated using a fuzzy metric. A smooth kernel is constructed with the proposed fuzzy metric instead of the Gaussian weighted L2 norm kernel. The fuzzy metric and smooth kernel computationally simplify the NLM algorithm and avoid the filter parameters. Meanwhile, the proposed FM-NLM using visual structure preferably preserves the original undistorted image structures. The performance of the improved method is visually and quantitatively comparable with or better than that of the current state-of-the-art NLM-based denoising algorithms.

Gaussian Noise Reduction Technique using Improved Kernel Function based on Non-Local Means Filter (비지역적 평균 필터 기반의 개선된 커널 함수를 이용한 가우시안 잡음 제거 기법)

  • Lin, Yueqi;Choi, Hyunho;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.73-76
    • /
    • 2018
  • A Gaussian noise is caused by surrounding environment or channel interference when transmitting image. The noise reduces not only image quality degradation but also high-level image processing performance. The Non-Local Means (NLM) filter finds similarity in the neighboring sets of pixels to remove noise and assigns weights according to similarity. The weighted average is calculated based on the weight. The NLM filter method shows low noise cancellation performance and high complexity in the process of finding the similarity using weight allocation and neighbor set. In order to solve these problems, we propose an algorithm that shows an excellent noise reduction performance by using Summed Square Image (SSI) to reduce the complexity and applying the weighting function based on a cosine Gaussian kernel function. Experimental results demonstrate the effectiveness of the proposed algorithm.

  • PDF

Experimental Study on Subjective Evaluation of Car Interior Sound Quality (승용차 내부소음의 음질평가 실험연구)

  • 최병호;아우구스트쉬크
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.177-182
    • /
    • 2003
  • This study is directed toward determining the number and characteristics of psychologically meaningful perceptual dimensions required for assessing the sound Ouaiity with respect to vehicle interior and/or exterior noises. and toward identifying the acoustical or psychoacoustical bases underlying the perception. By nonmetric MDS and clustring analysis of sound quality data sets on our own, of critical importance are two perceptual dimensions for which subjective verdicts can be interpreted as loudness and sharpness. The perceptual dimensions based upon similarity judgments could be accounted for 48% and 24% of the variance. each of which might be a match for the acoustic parameter "A-weighted maximum pressure level"(r= .85) and for the psychoacoustic parameter "sharpness" (r= .65), respectively. On the other hand, the perceptual dimensions based upon preference ratings could explain 66% and 10% of the variance. where the acoustic parameter "A-weighted maximum pressure leve"(r= .92) might be taken to be a best predictor, but sharpness appeared to be less suitable for the description of Preference behavior. Linked to the results, the problems of quantitative modelling of subjective sound quality evaluation and also of implementing corresponding cognitive combination rule for technical and industrial applications, say having "winner-sound qualify" according to preference criteria will be shortly in discussion.

  • PDF

Acoustic Signal based Optimal Route Selection Problem: Performance Comparison of Multi-Attribute Decision Making methods

  • Borkar, Prashant;Sarode, M.V.;Malik, L. G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.647-669
    • /
    • 2016
  • Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.

Beyond Categories: A Structural Analysis of the Social Representations of Information Users' Collective Perceptions on 'Relevance'

  • Ju, Boryung;O'Connor, Daniel O.
    • Journal of Information Science Theory and Practice
    • /
    • v.1 no.2
    • /
    • pp.16-35
    • /
    • 2013
  • Relevance has a long history of scholarly investigation and discussion in information science. One of its notable concepts is that of 'user-based' relevance. The purpose of this study is to examine how users construct their perspective on the concept of relevance; to analyze what the constituent elements (facets) of relevance are, in terms of core-periphery status; and to compare the difference of constructions of two groups of users (information users vs. information professionals) as applied with a social representations theory perspective. Data were collected from 244 information users and 123 information professionals through use of a free word association method. Three methods were employed to analyze data: (1) content analysis was used to elicit 26 categories (facets) of the concept of relevance; (2) structural analysis of social representations was used to determine the core-periphery status of those facets in terms of coreness, sum of similarity, and weighted frequency; and, (3) maximum tree analysis was used to present and compare the differences between the two groups. Elicited categories in this study overlap with the ones from previous relevance studies, while the findings of a core-periphery analysis show that Topicality, User-needs, Reliability/Credibility, and Importance are configured as core concepts for the information user group, while Topicality, User-needs, Reliability/Credibility, and Currency are core concepts for the information professional group. Differences between the social representations of relevance revealed that Topicality was similar to User-needs and to Importance. Author is closely related to Title while Reliability/Credibility is linked with Currency. Easiness/Clarity is similar to Accuracy. Overall, information users and professionals function with a similar social collective of shared meanings for the concept of relevance. The overall findings identify the core and periphery concepts of relevance and their relationships in terms of coreness, similarity, and weighted frequency.

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.