• Title/Summary/Keyword: weighted shift

Search Result 99, Processing Time 0.026 seconds

Block Error Performance of Transmission in Slow Nakagami Fading Channels with Diversity

  • Kim, Young-Nam;Kang, Heau-Jo;Chung, Myung-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.119-122
    • /
    • 2003
  • In this paper presents equations which describe an average weighted spectrum of errors and average block error probabilities for noncoherent frequency shift keying (NCFSK) used in D-branch maximal ratio combining (MRC) diversity in independent very slow nonselective Nakagami fading channels. The average is formed over the instantaneous receiver signal to noise ratio (SNR) after combining. the analysis is limited to additive Gaussian noise.

Impact of Special Causes on EWMA Feedback Process Adjustment (EWMA 피드백 공정 조정에서 이상원인의 영향)

  • 이재준;전상표;이종선
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.2
    • /
    • pp.183-193
    • /
    • 2003
  • A special cause producing temporary deviation in the underlying process can influence on process adjustment in responsive feedback control system. In this paper, the impact of special causes on the EWMA(Exponentially Weighted Moving Average) forecasts and the process adjustment that is based on the EWMA forecasts are derived. For some special causes with patterned type of contamination, the influence of the causes on the output process are explicitly investigated. A data set, contaminated by a special cause of level shift, is analyzed to evaluate the impact numerically.

SYNDETIC SEQUENCES AND DYNAMICS OF OPERATORS

  • Rezaei, Hamid
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.537-545
    • /
    • 2012
  • In the present paper, we show that a continuous linear operator T on a Frechet space satisfies the Hypercyclic Criterion with respect to a syndetic sequence must satisfy the Kitai Criterion. On the other hand, an operator, hereditarily hypercyclic with respect to a syndetic sequence must be mixing. We also construct weighted shift operators satisfying the Hypercyclicity Criterion which do not satisfy the Kitai Criterion. In other words, hereditarily hypercyclic operators without being mixing.

THE DUAL OF A FORMULA OF VISKOV

  • Szafraniec, Franciszek Hugon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.699-701
    • /
    • 2003
  • This minipaper offers a formula which is dual to that of Viskov [5]. While Viskov's can be thought of as a rising formula for Laguerre polynomials, ours is precisely the lowering one. Besides documenting the formula, which seems to be missing, we want to provide a (rather elementary) operator theory argument instead of making crude calculations. In other words, the annihilation and creation operators are confronted with lowering and rising formulae; they are often failed to be distinguished.

Human Body Tracking and Pose Estimation Using CamShift Based on Kalman Filter and Weighted Search Windows (칼만 필터와 가중탐색영역 CAMShift를 이용한 휴먼 바디 트래킹 및 자세추정)

  • Min, Jae-Hong;Kim, In-Gyu;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.545-552
    • /
    • 2012
  • In this paper, we propose Modified Multi CAMShift Algorithm based on Kalman filter and Weighted Search Windows(KWMCAMShift) that extracts skin color area and tracks several human body parts for real-time human tracking system. We propose modified CAMShift algorithm that generates background model, extracts skin area of hands and head, and tracks the body parts. Kalman filter stabilizes tracking search window of skin area due to changing skin area in consecutive frames. Each occlusion areas is avoided by using weighted window of non-search areas and main-search area. And shadows are eliminated from background model and intensity of shadow. The proposed KWMCAMShift algorithm can estimate human pose in real-time and achieves 96.82% accuracy even in the case of occlusions.

Development of CV Control Chart Using EWMA Technique (EWMA 기법을 적용한 CV 관리도의 개발)

  • Hong, Eui-Pyo;Kang, Chang-Wook;Baek, Jae-Won;Kang, Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.114-120
    • /
    • 2008
  • The control chart is widely used statistical process control(SPC) tool that searches for assignable cause of variation and detects any change of process. Generally, ${\bar{X}}-R$ control chart and ${\bar{X}}-S$ are most frequently used. When the production run is short and process parameter changes frequently, it is difficult to monitor the process using traditional control charts. In such a case, the coefficient of variation (CV) is very useful for monitoring the process variability. The CV control chart is an effective tool to control the mean and variability of process simultaneously. The CV control chart, however, is not sensitive at small shift in the magnitude of CV. In this paper, we propose an CV-EWMA (exponentially weighted moving average) control chart which is effective in detecting a small shift of CV. Since the CV-EWMA control chart scheme can be viewed as a weighted average of all past and current CV values, it is very sensitive to small change of mean and variability of the process. We suggest the values of design parameters and show the results of the performance study of CV-EWMA control chart by the use of average run length (ARL). When we compared the performance of CV-EWMA control chart with that of the CV control chart, we found that the CV-EWMA control chart gives longer in-control ARL and much shorter out-of-control ARL.

Object Tracking Algorithm Using Weighted Color Centroids Shifting (가중 컬러 중심 이동을 이용한 물체 추적 알고리즘)

  • Choi, Eun-Cheol;Lee, Suk-Ho;Kang, Moon-Gi
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.236-247
    • /
    • 2010
  • Recently, mean shift tracking algorithms have been proposed which use the information of color histogram together with some spatial information provided by the kernel. In spite of their fast speed, the algorithms are suffer from an inherent instability problem which is due to the use of an isotropic kernel for spatiality and the use of the Bhattacharyya coefficient as a similarity function. In this paper, we analyze how the kernel and the Bhattacharyya coefficient can arouse the instability problem. Based on the analysis, we propose a novel tracking scheme that uses a new representation of the location of the target which is constrained by the color, the area, and the spatiality information of the target in a more stable way than the mean shift algorithm. With this representation, the target localization in the next frame can be achieved by one step computation, which makes the tracking stable, even in difficult situations such as low-rate-frame environment, and partial occlusion.

Development of the Line Scan Diffusion Weighted Imaging at Low Tesla Magnetic Resonance Imaging System (저자장 자기공명영상시스템에서 선주사확산강조영상기법 개발)

  • Hong, Cheol-Pyo;Lee, Dong-Hoon;Lee, Do-Wan;Lee, Man-Woo;Paek, Mun-Young;Han, Bong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.2
    • /
    • pp.31-38
    • /
    • 2008
  • Line scan diffusion weighted imaging (LSDI) pulse sequence for 0.32 T magnetic resonance imaging (MRI) system was developed. In the LSDI pulse sequence, the imaging volume is formed by the intersection of the two perpendicular planes selected by the two slice-selective $\pi$/2-pulse and $\pi$-pulse and two diffusion sensitizing gradients placed on the both side of the refocusing $\pi$-pulse and the standard frequency encoding readout was followed. Since the maximum gradient amplitude for the MR system was 15 mT/m the maximum b value was $301.50s/mm^2$. Using the developed LSDI pulse sequence, the diffusion weighted images for the aqueous NaCl solution phantom and triacylglycerol solution phantom calculated from the line scan diffusion weighted images gives the same results within the standard error range (mean diffusivities = $963.90{\pm}79.83({\times}10^{-6}mm^2/s)$ at 0.32 T, $956.77{\pm}4.12({\times}10^{-6}mm^2/s)$ at 1.5 T) and the LSDI images were insensitive to the magnetic susceptibility difference and chemical shift.

  • PDF

Paradigm Shift in Intra-Arterial Mechanical Thrombectomy for Acute Ischemic Stroke : A Review of Randomized Controlled Trials after 2015

  • Sheen, Jae Jon;Kim, Young Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.4
    • /
    • pp.427-432
    • /
    • 2020
  • Three randomized control trials (RCTs), published in 2013, investigated efficacy of mechanical thrombectomy in large vessel occlusions and did not show better results compared to intravenous (IV) recombinant tissue-type plasminogen activator (tPA) alone. However, most clinicians treating stroke consider mechanical thrombectomy as the standard treatment rather than using IV tPA alone. This paradigm shift was based on five RCTs investigating efficacy of mechanical thrombectomy in acute ischemic stroke conducted from 2010 to 2015. They demonstrated that mechanical thrombectomy was effective and safe in acute ischemic stroke with anterior circulation occlusion when performed within 6 hours of stroke onset. There are four reasons underlying the different results observed between the trials conducted in 2013 and 2015. First, the three RCTs of 2013 used low-efficiency thrombectomy devices. Second, the three RCTs used insufficient image selection criteria. Third, following the initial presentation at the hospital, reperfusion treatment required a long time. Fourth, the three RCTs showed a low rate of successful recanalization. Time is the most important factor in the treatment of acute ischemic stroke. However, current trends utilize advanced imaging techniques, such as diffusion-weighted imaging and multi-channel computer tomographic perfusion, to facilitate the detection of core infarction, penumbra, and collateral flows. These efforts demonstrate that patient selection may overcome the barriers of time in specific cases.

AN INTEGRATED PROCESS CONTROL PROCEDURE WITH REPEATED ADJUSTMENTS AND EWMA MONITORING UNDER AN IMA(1,1) DISTURBANCE WITH A STEP SHIFT

  • Park, Chang-Soon
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.381-399
    • /
    • 2004
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for process quality improvement. SPC re-duces process variability by detecting and eliminating special causes of process variation, while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been need for an integrated process control (IPC) procedure which combines the two strategies. This paper considers a scheme that simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process model under consideration is an IMA(1,1) model with a step shift. The EPC part of the scheme adjusts the process, while the SPC part of the scheme detects the occurrence of a special cause. For adjusting the process repeated adjustment is applied according to the predicted deviation from target. For detecting special causes the exponentially weighted moving average control chart is applied to the observed deviations. It was assumed that the adjustment under the presence of a special cause may increase the process variability or change the system gain. Reasonable choices of parameters for the IPC procedure are considered in the context of the mean squared deviation as well as the average run length.