The transportation problem (TP) is one of the earliest and the most significant implementations of linear programming problem (LPP). It is a specific type of LPP that mostly works with logistics and it is connected to day-to-day activities in our everyday lives. Nowadays decision makers (DM's) aim to reduce the transporting expenses and simultaneously aim to reduce the transporting time of the distribution system so the bi-objective transportation problem (BOTP) is established in the research. In real life, the transportation parameters are naturally uncertain due to insufficient data, poor judgement and circumstances in the environment, etc. In view of this, neutrosophic bi-objective transportation problem (NBOTP) is introduced in this paper. By introducing single-valued trapezoidal neutrosophic numbers (SVTrNNs) to the co-efficient of the objective function, supply and demand constraints, the problem is formulated. The DM's aim is to determine the optimal compromise solution for NBOTP. The extended weighted possibility mean for single-valued trapezoidal neutrosophic numbers based on [40] is proposed to transform the single-valued trapezoidal neutrosophic BOTP (SVTrNBOTP) into its deterministic BOTP. The transformed deterministic BOTP is then solved using the dripping method [10]. Numerical examples are provided to illustrate the applicability, effectiveness and usefulness of the solution approach. A sensitivity analysis (SA) determines the sensitivity ranges for the objective functions of deterministic BOTP. Finally, the obtained optimal compromise solution from the proposed approach provides a better result as compared to the existing approaches and conclusions are discussed for future research.
KIM, Bum-Kyu;YOON, Hong-Joo;KIM, Tae-Hoon;CHOI, Hyun-Woo
Journal of the Korean Association of Geographic Information Studies
/
v.23
no.3
/
pp.263-274
/
2020
In the Southeast Sea of Korea, a cold water mass is formed intensively in summer every year, causing frequent abnormal sea conditions. In order to analyze the spatial changes of sea surface temperature distribution in this area, ocean fields buoy data observed at Gori and Jeongja and reanalyzed sea surface temperature(SST) data from GHRSST Level 4 were used from June to September 2018. The buoy data were used to analyze the time-series water temperature changes at two stations, and the GHRSST data were used to calculate the daily SST variance and weighted mean center(WMC) across the study area. When the buoy's water temperature was lowered, the variance of SST in the study area trend to increase, but it did not appear consistently for the entire period. This is because GHRSST is a reanalysis data that does not reflect sensitive changes in water temperature along the coast. As such, there is a limit to grasping the local small-scale water temperature change in the coast or detecting the location and extent of the cold water zone only by the statistical variance representing the SST change in the entire sea area. Therefore, as a result of using WMC to quantitatively determine the spatial location of the cold water mass, when the cold water zone occurred, WMC was located in the northwest sea area from the mean center(MC) of the study area. This means that it is possible to quantitatively identify where and to what extent the distribution of cold surface water temperature appears through SST's WMC location information, and we could see the possibility of WMC's use in detecting the scale of cold water zones and the extent of regional spread in the future.
Recently, among the computational methods of protein-protein interaction prediction, vast amounts of domain based methods originated from domain-domain relation consideration have been developed. However, it is true that multi domains collaboration is avowedly ignored because of computational complexity. In this paper, we implemented a protein interaction prediction system based the Interaction Significance matrix, which quantified an influence of domain combination pair on a protein interaction. Unlike conventional domain combination methods, IS matrix contains weighted domain combinations and domain combination pair power, which mean possibilities of domain collaboration and being the main body on a protein interaction. About 63% of sensitivity and 94% of specificity were measured when we use interaction data from DIP, IntAct and Pfam-A as a domain database. In addition, prediction accuracy gradually increased by growth of learning set size, The prediction software and learning data are currently available on the web site.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.4
/
pp.233-242
/
2019
ZHD (Zenith Hydrostatic Delay) model is important parameter in estimating of GNSS (Global Navigation Satellite System) PWV (Precipitable Water Vapor) along with weighted mean temperature. The ZWD (Zenith Wet Delay) is tend to accumulate the ZHD error, so that biases from ZHD will be affected on the precision of GNSS PWV. In this paper, we compared the accuracy of GNSS PWV with radiosonde PWV using three ZHD models, such as Saastamoinen, Hopfield, and Black. Also, we adopted the KWMT (Korean Weighted Mean Temperature) model and the mean temperature which was observed by radiosonde on the retrieval processing of GNSS PWV. To this end, GNSS observation data during one year were processed to produce PWVs from a total of 5 GNSS permanent stations in Korea, and the GNSS PWVs were compared with radiosonde PWVs for the evaluating of biases. The PWV biases using mean temperature estimated by the KWMT model are smaller than radiosonde mean temperature. Also, we could confirm the result that the Saastamoinen ZHD which is most used in the GNSS meteorology is not valid in South Korea, because it cannot be exclude the possibility of biases by latitude or height of GNSS station.
Journal of the Korean Institute of Educational Facilities
/
v.26
no.2
/
pp.3-10
/
2019
This study evaluated the vibration use and safety of students living in the dormitories on the 12th and 14th floors by feeling uncomfortable. The measurement method was to measure the acceleration due to free vibration and single - person walking. The slab stiffness was then calculated, and the usability and safety were compared according to international standards. The natural frequency of the slab was 6.8 Hz. The natural frequency of a typical slab is around 15Hz. Therefore, the evaluation slab is judged as a flexible floor structure. It is considered that there is a high possibility of resonance in the middle of daily life because of low natural frequency and near harmonic component of walking vibration. As a result, the RMS acceleration level is within the tolerance range defined by ISO 10137 code, but the 13th floor exceeds the reference limit, so that a sensitive person could detect the vibration somewhat in the lying position.
Kim, Ki-Ju;Bu, Jun-Oh;Kim, Won-Hyung;Lee, Yoon-Sang;Hyeon, Dong-Rim;Kang, Chang-Hee
Journal of Korean Society for Atmospheric Environment
/
v.29
no.6
/
pp.818-829
/
2013
The collection of rainwater samples was made at Jeju area during 2009~2010, and the major ionic species were analyzed. In the comparison of ion balance, conductivity, and acid fraction for the validation of analytical data, the correlation coefficients showed a good linear relationship within the range of 0.966~0.990. The volume-weighted mean pH and electric conductivity were 4.9 and $17.8{\mu}S/cm$, respectively, at the Jeju area. The volume-weighted mean concentrations of ionic species in rainwater were in the order of $Cl^-$ > $Na^+$ > $nss-SO_4{^{2-}}$ > $NH_4{^+}$ > $NO_3{^-}$ > $Mg^{2+}$ > $H^+$ > $nss-Ca^{2+}$ > $HCOO^-$ > $K^+$ > $PO_4{^{3-}}$ > $CH_3COO^-$ > $NO_2{^-}$ > $F^-$ > $HCO_3{^-}$ > $CH_3SO_3{^-}$. The ionic strength of rainwater was $0.26{\pm}0.21$ mM during the study period. The composition ratios of ionic species were such as 50.1% for the marine sources ($Na^+$, $Mg^{2+}$, $Cl^-$), 30.9% for the anthropogenic sources ($NH_4{^+}$, $nss-SO_4{^{2-}}$, $NO_3{^-}$), and 4.7% for the soil source ($nss-Ca^{2+}$), and 3.1% for organic acids ($HCOO^-$, $CH_3COO^-$). From the seasonal comparison, the concentrations of $NO_3{^-}$, $nss-Ca^{2+}$, and $nss-SO_4{^{2-}}$ increased in winter and spring seasons, indicating a reasonable possibility of long range transport from Asia continent. Especially, the acidifying contributions by major inorganic acids ($nss-SO_4{^{2-}}$ and $NO_3{^-}$) and organic acids ($HCOO^-$ and $CH_3COO^-$) were 87.6% and 12.4%, respectively. In comparison by sectional inflow pathway of air mass during the rainy sampling days, the concentrations of $nss-SO_4{^{2-}}$ and $NO_3{^-}$ were relatively high when the air mass was moved from the China continent into Jeju area.
Supernovae type Ia (SNe Ia) cosmology is providing the only direct evidence for the presence of dark energy. This result is based on the assumption that the look-back time evolution of SNe Ia luminosity, after light-curve shape correction, would be negligible. However, the most recent compilation of SNe Ia data shows systematic difference in the Hubble residual (HR) between the E and Sd/Irr galaxies, indicating that the light-curve fitters used by the SNe Ia community cannot quite correct for a large portion of the population age effect. In order to investigate this possibility more directly, we have obtained low-resolution spectra for 30 nearby early-type host galaxies. This data set is used to estimate the luminosity-weighted mean ages and metallicities of host galaxies by employing the population synthesis models. We found an interesting trend between the host galaxy age and HR, in the sense that younger galaxies have positive residuals (i.e., light-curve corrected SNe Ia luminosity is fainter). This result is rather independent of the choice of the population synthesis models employed. Taken at face value, this age (evolution) effect can mimic a large fraction of the HR used in the discovery of the dark energy. This result is significant at 1.4 - 3 sigma levels, depending on the light curve fitters adopted, and further observations and analyses are certainly required to confirm the trend reported here.
Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.
Journal of Korean Society of Environmental Engineers
/
v.35
no.3
/
pp.171-178
/
2013
In this study, the sludge that occurs in the initial operation of coagulation system developed for the treatment of CSOs were returned to the flocculation reactor. The purposes of this study were to analyze the Characteristics of flocs that are generated through the recycling sludge and settling characteristics of sludge, and to evaluate the possibility that high concentrations of particulate matter in the initial inflow of CSOs could be used as an weighted coagulant additive. As a result, the concentration of treated CSOs pollutants at the beginning of the CSOs influent with a large amount of particulate matter over 20 ${\mu}m$ was low, after gradually increasing the concentrations of them. The flocs generated from the sludge return were similar in size compared to flocs generated through injection of micro sands, and settling velocity in case of return sludge injection was decreased from 55.1 cm/min to 21.5 cm/min. SVI value of the sludge accumulated at the bottom of the sedimentation tank was 72, and settled sludge volume decreased rapidly due to the consolidation of sludge to the time it takes to 10 minutes. these mean that sludge used for recycling has good settling characteristic. A condition of returned sludge which is 0.1% return of 0.3% extraction was formed in the balance of settlement and extraction. In this case, This condition was to be adequate to maintain the proper concentration such as 100~200 mg/L of TS and 50~100 mg/L of VS in the flocculation reactor. The usage of the return sludge containing particulate matters of CSOs as an weighted coagulant additive was able to secure a stable treated water quality despite the change of influent water quality dynamically. Furthermore, it can be expected to reduce the alum dosage along with the sludge production.
The major purpose of this study is to construct a retrospective exposure assessment for benzene through a review of literature on Korea. Airborne benzene measurements reported in 34 articles were reviewed. A total of 15,729 individual measurements were compiled. Weighted arithmetic means [AM(w)] and their variance calculated across studies were summarized according to 5-year period intervals (prior to the 1970s through the 2010s) and industry type. Industries were classified according to Korea Standard Industrial Classification (KSIC) using information provided in the literature. We estimated quantitative retrospective exposure to benzene for each cell in the matrix through a combination of time and KSIC. Analysis of the AM(w) indicated reductions in exposure levels over time, regardless of industry, with mean levels prior to the 1980-1984 period of 50.4 ppm (n = 2,289), which dropped to 2.8 ppm (n = 305) in the 1990-1994 period, and to 0.1 ppm (n = 294) in the 1995-1999 period. There has been no improvement since the 2000s, when the AM(w) of 4.3 ppm (n = 6,211) for the 2005-2009 period and 4.5 ppm (n = 3,358) for the 2010-2013 period were estimated. A comparison by industry found no consistent patterns in the measurement results. Our estimated benzene measurements can be used to determine not only the possibility of retrospective exposure to benzene, but also to estimate the level of quantitative or semiquantitative retrospective exposure to benzene.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.