KSII Transactions on Internet and Information Systems (TIIS)
/
제8권6호
/
pp.1964-1981
/
2014
An improved Mean-Shift (MS) tracker called joint CB-LBWH, which uses a combined weighted-histogram scheme of CBWH (Corrected Background-Weighted Histogram) and LBWH (likelihood-based Background-Weighted Histogram), is presented. Joint CB-LBWH is based on the notion that target representation employs both feature saliency and confidence to form a compound weighted histogram criterion. As the more prominent and confident features mean more significant for tracking the target, the tuned histogram by joint CB-LBWH can reduce the interference of background in target localization effectively. Comparative experimental results show that the proposed joint CB-LBWH scheme can significantly improve the efficiency and robustness of MS tracker when heavy occlusions and complex scenes exist.
본 논문에서는 두 가지 영상 콘트라스트 향상 기법인 RSWHE (Recursively Separated and Weighted Histogram Equalization)와 RSWHS (Recursively Separated and Weighted Histogram Specification)를 새롭게 제안한다. RSWHE는 히스토그램 평활화 방법에 히스토그램 분할과 가중치 개념을 적용하였고, RSWHS는 히스토그램 명세화 방법에 히스토그램 분할과 가중치 개념을 적용하였다. 제안 방법은 1) 입력 영상의 평균 명도 값을 기준으로 히스토그램을 분할하고, 2) 분할된 각 서브히스토그램(sub-histogram)이 차지하는 확률밀도 값을 계산하며, 3) 계산된 확률밀도 값을 가중치로 사용하여 각 서브히스토그램을 변형한 후, 4) 변형된 각 서브히스토그램을 독립적으로 평활화 하거나 (RSWHE 방법인 경우) 또는 명세화 하게 (RSWHS 방법인 경우) 된다. 다양한 영상에 대한 실험을 통하여, 제안하는 두 방법이 기존의 다른 방법들에 비하여 콘트라스트 향상과 평균 명도 보존 측면에서 우수한 성능을 나타냄을 알 수 있었다.
본 논문은 Wang-Ward의 WTHE(Weighted and Thresholded Histogram Equalization) 방법에 히스토그램 분할 개념을 적용한 새로운 영상 화질 개선 방법(DWTHE: Decomposable WTHE)을 제안한다. DWTHE는 먼저 영상의 평균 자기 값 또는 명도 균등 분할점을 기준으로 입력 히스토그램의 영역을 분할하고, 분할된 각 영역의 확률밀도 값을 가중치로 사용하여 새로운 히스토그램을 만든 후, 히스토그램 평활화 과정을 수행하게 된다. 하나의 가중치를 사용하는 WTHE 방법과 다르게, 제안 방법은 히스토그램 분할로 인한 복수외 가중치 값을 사용하게 되며, 실험 결과 제안 방법은 기존 방법에 비해 우수한 화질 개선 효과를 보여주었다.
International Journal of Internet, Broadcasting and Communication
/
제13권2호
/
pp.156-165
/
2021
In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.
본 논문에서는 Perceptually Weighted Histogram(PWH)과 Gaussian Weighted Histogram Intersection(GWHI) 알고리즘을 기술한다. 이러한 알고리즘들은 영상검색에서 명확한 결과를 이끌어 낼 수 있지만 빛의 변화에 의해 히스토그램이 변화될 수 있다는 단점이 있다. 즉, 같은 두 영상이 빛의 세기가 약간 다를 때 쉽게 매치되지 않을 수 있다. 그래서 빛의 밝기나 색상에 의해 변화된 영상을 같은 영상으로 처리할 수 있는 히스토그램 매칭 알고리즘(Histogram Matching Algorithm)을 제안한다. 실험결과, 제안한 알고리즘은 기존의 PWH와 GWHI 알고리즘보다 recall에서 각각 32%, 30%, precision에서 각각 38%, 34%까지 우수한 결과를 보였다. 따라서 제안한 알고리즘은 빛의 변화가 일어난 영상도 쉽게 검색할 수 있음을 알 수 있다.
저화질 이미지의 화질 개선에는 전통적으로 히스토그램균등화 기법이 사용되어 왔다. 히스토그램균등화 기법은 입력 이미지의 누적밀도함수를 변환함수로 사용하는 기법으로 이는 이론상 최대의 엔트로피를 가지지만 주관적 화질 측면에서는 백화현상이 나타나는 문제점이 있다. 본 논문에서는 히스토그램균등화 기법 기반의 가중 히스토그램 균등화 기법을 제안한다. 이는 인간의 시각특성을 반영한 Weber-Fechner 법칙을 사용하며 입력영상에 독립적인 변환함수를 제공하는 여러 이미지 화질 개선 기법들이 가지는 문제점을 해결하기 위해서 동적영역 재조정 과정을 포함한다. 최종적으로 재조정된 동적영역 범위 내에서 Weber-Fechner 법칙을 적용한 변환함수와 히스토그램균등화 기법을 통해 얻어진 변환함수간의 가중 평균을 통하여 변환함수를 생성한다. 실험결과 제안하는 알고리즘은 주관적 화질 측면에서 대비비를 효과적으로 향상시키는 것을 보여주며, 엔트로피 또한 비교에 사용된 여러 이전의 방법들과 비교하여 유사하거나 높은 값을 가지는 것을 볼 수 있었다.
본 논문에서는 효율적인 명암도 향상 알고리즘으로 가중치 히스토그램 수정을 제안한다. 명암도 향상을 위하여 히스토그램 평활화와 히스토그램 스트레칭은 효과적인 방법들이다. 하지만, 히스토그램 평활화와 히스토그램 스트레칭은 지나친 명암도 향상을 가져올 수 있다. 가중치 히스토그램 수정을 이용하는 제안하는 방법은 부작용 없이 기존 명함도 향상하는 방법들 보다 자연스럽고 향상된 결과를 가진다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권3호
/
pp.1377-1389
/
2016
This paper presents a target model update scheme for the mean-shift tracking with background weighted histogram. In the scheme, the target candidate histogram is corrected by considering the back-projection weight of each pixel in the kernel after the best target candidate in the current frame image is chosen. In each frame, the target model is updated by the weighted average of the current target model and the corrected target candidate. We compared our target model update scheme with the previous ones by applying several test sequences. The experimental results showed that the object tracking accuracy was greatly improved by using the proposed scheme.
본 논문에서는 T1 강조 영상, T2 강조 영상 그리고 PD 영상의 히스토그램 특징을 상호 보완적으로 이용한 영상 분할 방법을 제안한다. 제안한 분할 알고리듬은 3단계로 이루어지는데, 첫 번째 단계에서는 T1과 T2, PD 영상으로부터 각각의 대뇌 영상을 추출하고, 두 번째 단계에서는 대뇌 영상의 히스토그램에서 봉우리 범위를 추출하고, 마지막 단계에서는 클러스터링을 이용하여 대뇌 영상을 분할한다. 본 논문에서는 봉우리 범위에 따른 분할결과와 수행 시간을 비교하고 기존의 분할 방법에 의한 실험 결과와 수행시간을 비교하여 보이는데 제안한 방법의 분할결과가 기존의 방법에 의한 결과보다 더 나은 결과를 보임을 확인할 수 있었다.
In this paper we propose an image enhancement technique based on histogram specification method over local overlapping regions referred as Local Histogram Specification. First, both reference and original images are splitted into local regions that each overlaps half of its adjacent regions and general histogram specification method is used between corresponding local regions of reference and original image. However it produces noticeable boundary effects. Linear weighted image blending method is used to reduce this effect in order to make seamless image and we also proposed new technique dealing with over-enhanced contrast areas. We satisfied with our experimental results that showed better enhancement accuracy and less noise amplifications compared to other well-known image enhancement methods. We conclude that the proposed method is well suited for motion detection systems as a responsible part to overcome sudden illumination changes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.