• Title/Summary/Keyword: weighted average method

Search Result 354, Processing Time 0.027 seconds

Expressway Travel Time Prediction Using K-Nearest Neighborhood (KNN 알고리즘을 활용한 고속도로 통행시간 예측)

  • Shin, Kangwon;Shim, Sangwoo;Choi, Keechoo;Kim, Soohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1873-1879
    • /
    • 2014
  • There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.

Genetic characterization of microsporidians infecting Indian non-mulberry silkworms (Antheraea assamensis and Samia cynthia ricini) by using PCR based ISSR and RAPD markers assay

  • Hassan, Wazid;Nath, B. Surendra
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.30 no.1
    • /
    • pp.6-16
    • /
    • 2015
  • This study established the genetic characterisation of 10 microsporidian isolates infecting non-mulberry silkworms (Antheraea assamensis and Samia cynthia ricini) collected from biogeographical forest locations in the State of Assam, India, using PCR-based markers assays: inter simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD). A Nosema type species (NIK-1s_mys) was used as control for comparison. The shape of mature microsporidian spores were observed oval to elongated, measuring 3.80 to $4.90{\mu}m$ in length and 2.60 to $3.05{\mu}m$ in width. Fourteen ISSR primers generated reproducible profiles and yielded 178 fragments, of which 175 were polymorphic (98%), while 16 RAPD primers generated reproducible profiles with 198 amplified fragments displaying 95% of polymorphism. Estimation of genetic distance coefficients based on dice coefficients method and clustering with un-weighted pair group method using arithmetic average (UPGMA) analysis was done to unravel the genetic diversity of microsporidians infecting Indian muga and eri silkworm. The similarity coefficients varied from 0.385 to 0.941 in ISSR and 0.083 to 0.938 in RAPD data. UPGMA analysis generated dendrograms with two microsporidian groups, which appear to be different from each other. Based on Euclidean distance matrix method, 2-dimensional distribution also revealed considerable variability among different identified microsporidians. Clustering of these microsporidian isolates was in accordance with their host and biogeographic origin. Both techniques represent a useful and efficient tool for taxonomical grouping as well as for phylogenetic classification of different microsporidians in general and genotyping of these pathogens in particular.

An Image Merging Method for Two High Dynamic Range Images of Different Exposure (노출 시간이 다른 두 HDR 영상의 융합 기법)

  • Kim, Jin-Heon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.526-534
    • /
    • 2010
  • This paper describes an algorithm which merges two HDR pictures taken under different exposure time to display on the LDR devices such as LCD or CRT. The proposed method does not generate the radiance map, but directly merges using the weights computed from the input images. The weights are firstly produced on the pixel basis, and then blended with a Gaussian function. This process prevents some possible sparkle noises caused by radical change of the weights and contributes to smooth connection between 2 image informations. The chrominance informations of the images are merged on the weighted averaging scheme using the deviations of RGB average and their differences. The algorithm is characterized by the feature that it represents well the unsaturated area of 2 original images and the connection of the image information is smooth. The proposed method uses only 2 input images and automatically tunes the whole internal process according to them, thus autonomous operation is possible when it is included in HDR cameras which use double shuttering scheme or double sensor cells.

Visually Weighted Group-Sparsity Recovery for Compressed Sensing of Color Images with Edge-Preserving Filter (컬러 영상의 압축 센싱을 위한 경계보존 필터 및 시각적 가중치 적용 기반 그룹-희소성 복원)

  • Nguyen, Viet Anh;Trinh, Chien Van;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.106-113
    • /
    • 2015
  • This paper integrates human visual system (HVS) characteristics into compressed sensing recovery of color images. The proposed visual weighting of each color channel in group-sparsity minimization not only pursues sparsity level of image but also reflects HVS characteristics well. Additionally, an edge-preserving filter is embedded in the scheme to remove noise while preserving edges of image so that quality of reconstructed image is further enhanced. Experimental results show that the average PSNR of the proposed method is 0.56 ~ 4dB higher than that of the state-of-the art group-sparsity minimization method. These results prove the excellence of the proposed method in both terms of objective and subjective qualities.

Robust Threshold Determination on Various Lighting for Marker-based Indoor Navigation (마커 방식 실내 내비게이션을 위한 조명 변화에 강한 임계값 결정 방법)

  • Choi, Tae-Woong;Lee, Hyun-Cheol;Hur, Gi-Taek;Kim, Eun-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In this paper, a method of determining the optimal threshold in image binarization for the marker recognition is suggested to resolve the problem that the performances of marker recognition are quite different according to the changes of indoor lighting. The suggested method determines the optimal threshold by considering the average brightness, the standard deviation and the maximum deviation of video image under the various indoor lighting circumstances, such as bright light, dim light, and shadow by unspecified obstacles. In particular, the recognition under the gradation lighting by shadow is improved by applying the weighted value that depends on the brightness of image. The suggested method is experimented to process $720{\times}480$ resolution video images under the various lighting environments, and it shows the fast and high performance, which is suitable for mobile indoor navigation.

Statistical Back Trajectory Analysis for Estimation of CO2 Emission Source Regions (공기괴 역궤적 모델의 통계 분석을 통한 이산화탄소 배출 지역 추정)

  • Li, Shanlan;Park, Sunyoung;Park, Mi-Kyung;Jo, Chun Ok;Kim, Jae-Yeon;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2014
  • Statistical trajectory analysis has been widely used to identify potential source regions for chemically and radiatively important chemical species in the atmosphere. The most widely used method is a statistical source-receptor model developed by Stohl (1996), of which the underlying principle is that elevated concentrations at an observation site are proportionally related to both the average concentrations on a specific grid cell where the observed air mass has been passing over and the residence time staying over that grid cell. Thus, the method can compute a residence-time-weighted mean concentration for each grid cell by superimposing the back trajectory domain on the grid matrix. The concentration on a grid cell could be used as a proxy for potential source strength of corresponding species. This technical note describes the statistical trajectory approach and introduces its application to estimate potential source regions of $CO_2$ enhancements observed at Korean Global Atmosphere Watch Observatory in Anmyeon-do. Back trajectories are calculated using HYSPLIT 4 model based on wind fields provided by NCEP GDAS. The identified $CO_2$ potential source regions responsible for the pollution events observed at Anmyeon-do in 2010 were mainly Beijing area and the Northern China where Haerbin, Shenyang and Changchun mega cities are located. This is consistent with bottom-up emission information. In spite of inherent uncertainties of this method in estimating sharp spatial gradients within the vicinity of the emission hot spots, this study suggests that the statistical trajectory analysis can be a useful tool for identifying anthropogenic potential source regions for major GHGs.

Development of an Incident Detection Algorithm by Using Traffic Flow Pattern (이력패턴데이터를 이용한 돌발상황 감지알고리즘 개발)

  • Heo, Min-Guk;No, Chang-Gyun;Kim, Won-Gil;Son, Bong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Research of this paper focused on developing and demonstrating of algorithm with the figures of difference between historical traffic pattern data and real-time traffic data to decide on what the incident is. The aim of this dissertation is to develop incident detection algorithm which can be understood and modified easier to operate. To establish traffic pattern of this algorithm, weighted moving average method was applied. The basis of this method was traffic volume and speed of the same day and time at the same location based on 30-second raw data. The model was completed by a serious of steps of process-screening process of error data, decision of the traffic condition, comparison with pattern data, decision of incident circumstances, continuity test. A variety of parameter value was applied to select reasonable parameter. Results of application of the algorithm came out with figures of average detection rate 94.7 percent, 0.8 percent rate of misinformation and the average detection time 1.6 minutes. With these following results, the detection rate turned out to be superior compared with result of existing model. Applying the concept of traffic patterns was useful to gain excellent results of this study. Also, this study is significant in terms of making algorithm which theorized the decision process of actual operators.

Analysis on Characteristics of Variation in Flood Flow by Changing Order of Probability Weighted Moments (확률가중모멘트의 차수 변화에 따른 홍수량 변동 특성 분석)

  • Maeng, Seung-Jin;Hwang, Ju-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1009-1019
    • /
    • 2009
  • In this research, various characteristics of South Korea's design flood have been examined by deriving appropriate design flood, using data obtained from careful observation of actual floods occurring in selected main watersheds of the nation. 19 watersheds were selected for research in Korea. The various characteristics of annual rainfall were analyzed by using a moving average method. The frequency analysis was decided to be performed on the annual maximum flood of succeeding one year as a reference year. For the 19 watersheds, tests of basic statistics, independent, homogeneity, and outlier were calculated per period of annual maximum flood series. By performing a test using the LH-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, among applied distributions of Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distribution was found to be adequate compared with other probability distributions. Parameters of GEV distribution were estimated by L, L1, L2, L3 and L4-moment method based on the change in the order of probability weighted moments. Design floods per watershed and the periods of annual maximum flood series were derived by GEV distribution. According to the result of the analysis performed by using variation rate used in this research, it has been concluded that the time for changing the design conditions to ensure the proper hydraulic structure that considers recent climate changes of the nation brought about by global warming should be around the year 2002.

A Multi-objective Ant Colony Optimization Algorithm for Real Time Intrusion Detection Routing in Sensor Network (센서 네트워크에서 실시간 침입탐지 라우팅을 위한 다목적 개미 군집 최적화 알고리즘)

  • Kang, Seung-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.5
    • /
    • pp.191-198
    • /
    • 2013
  • It is required to transmit data through shorter path between sensor and base node for real time intrusion detection in wireless sensor networks (WSN) with a mobile base node. Because minimum Wiener index spanning tree (MWST) based routing approach guarantees lower average hop count than that of minimum spanning tree (MST) based routing method in WSN, it is known that MWST based routing is appropriate for real time intrusion detection. However, the minimum Wiener index spanning tree problem which aims to find a spanning tree which has the minimum Wiener index from a given weighted graph was proved to be a NP-hard. And owing to its high dependency on certain nodes, minimum Wiener index tree based routing method has a shorter network lifetime than that of minimum spanning tree based routing method. In this paper, we propose a multi-objective ant colony optimization algorithm to tackle these problems, so that it can be used to detect intrusion in real time in wireless sensor networks with a mobile base node. And we compare the results of our proposed method with MST based routing and MWST based routing in respect to average hop count, network energy consumption and network lifetime by simulation.

Deep Learning Based Group Synchronization for Networked Immersive Interactions (네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법)

  • Lee, Joong-Jae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.373-380
    • /
    • 2022
  • This paper presents a deep learning based group synchronization that supports networked immersive interactions between remote users. The goal of group synchronization is to enable all participants to synchronously interact with others for increasing user presence Most previous methods focus on NTP-based clock synchronization to enhance time accuracy. Moving average filters are used to control media playout time on the synchronization server. As an example, the exponentially weighted moving average(EWMA) would be able to track and estimate accurate playout time if the changes in input data are not significant. However it needs more time to be stable for any given change over time due to codec and system loads or fluctuations in network status. To tackle this problem, this work proposes the Deep Group Synchronization(DeepGroupSync), a group synchronization based on deep learning that models important features from the data. This model consists of two Gated Recurrent Unit(GRU) layers and one fully-connected layer, which predicts an optimal playout time by utilizing the sequential playout delays. The experiments are conducted with an existing method that uses the EWMA and the proposed method that uses the DeepGroupSync. The results show that the proposed method are more robust against unpredictable or rapid network condition changes than the existing method.