• Title/Summary/Keyword: weight sensor

Search Result 583, Processing Time 0.024 seconds

Development of Plantar Pressure Measurement System and Personal Classification Study based on Plantar Pressure Image

  • Ho, Jong Gab;Kim, Dae Gyeom;Kim, Young;Jang, Seung-wan;Min, Se Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3875-3891
    • /
    • 2021
  • In this study, a Velostat pressure sensor was manufactured to develop a plantar pressure measurement system and a C#-based application was developed to monitor and collect plantar pressure data in real time. In order to evaluate the characteristics of the proposed plantar pressure measurement system, the accuracy of plantar pressure index and personal classification was verified by comparing with MatScan, a commercial plantar pressure measurement system. As a result, the output characteristics according to the weight of the Velostat pressure sensor were evaluated and a trend line with the reliability of r2 = 0.98 was detected. The Root Mean Square Error(RMSE) of the weighted area was 11.315 cm2, the RMSE of the x coordinate of Center of Pressure(CoPx) was 1.036 cm and the RMSE of the y coordinate of Center of Pressure(CoPy) was 0.936 cm. Finally, inaccuracy of personal classification, the proposed system was 99.47% and MatScan was 96.86%. Based on the advantage of being simple to implement and capable of manufacturing at low cost, it is considered that it can be applied to various fields of measuring vital signs such as sitting posture and breathing in addition to the plantar pressure measurement system.

Rough Terrain Landing Technique of Quadcopter Based on 3-Leg Landing System (3-leg 랜딩 시스템 기반 쿼드콥터의 험지 착륙 기법)

  • Park, Jinwoo;Choi, Jiwook;Cheon, Donghun;Yi, Seungjoon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.438-446
    • /
    • 2022
  • In this paper, we propose an intelligent three-legged landing system that can maintain stability and level even on rough terrain than conventional four-legged landing systems. Conventional landing gear has the limitation that it requires flat terrain for landing. The 3-leg landing system proposed in this paper extends the usable range of the legs and reduces the weight, allowing the quadcopter to operate in various environments. To do this, kinematics determine the joint angles and coordinates of the legs of the two-link structure. Based on the angle value of the quadcopter detected via the IMU sensor, the leg control method that corrects the posture is determined. A force sensor attached to the end of the leg is used to detect contact with the ground. At the moment of contact with the ground, landing control starts according to the value of the IMU sensor. The proposed system verifies its reliability in various environments through an indoor landing test stand. Finally, in an outdoor environment, the quadcopter lands on a 20 degree incline and 20 cm rough terrain after flight. This demonstrates the stability and effectiveness of the 3-leg landing system even on rough terrain compared to the 4-leg landing system.

A Study on Portable Weighing Scales Applicable to Poultry Farms (가금류 농장에 적용 가능한 이동식 중량 저울에 관한 연구)

  • Park, Sung Jin;Park, In Ji;Kim, Jin Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.155-159
    • /
    • 2022
  • Smart livestock, which combines information and communication technology (ICT) with livestock, can be said to be an effective solution to existing livestock problems such as productivity improvement, odors, and diseases. So far, it has hardly been universalized; thus, it is necessary to develop automation devices to reduce labor by localizing automation devices to expand the distribution of ICT technology to farms, and to advance precise specifications and health management technology using biometric information. Weighing scales currently being used in livestock farms are to prevent the spread of diseases by diagnosis and preparation for AI and other diseases in advance, using information on the growing weight of duck breeding. However, accurate values cannot be obtained due to poor breeding conditions. In this paper, we developed a separate data transmission system kit for the weighing scale and placed the sensor on top of the weighing scale so that the sensor wire is not affected by pollutants or ducks on the floor. A display function was provided, and a method of receiving and analyzing the serial port data of the weighing device, and then transmitting them to the data collection server was implemented.

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

Combined Optimal Design with Minimum Phase System (최소위상시스템을 고려한 통합최적설계)

  • 박중현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.192-196
    • /
    • 2004
  • A combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only the minimum weight design problem for the structure, but also the suppression problem of the effect of disturbances for the control system as the purpose of the design. A numerical example shows the validity of combined optimal design of the structure and control systems. We also consider the validity of the sensor-actuator collocation for the control system design in this paper.

Swing Motion of Miniaturized Humanoid Robot (소형 휴머노이드 로봇의 그네 운동)

  • 이수영;정길도;성영휘;박성훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.267-272
    • /
    • 2004
  • In this Paper, we present analysis on the dynamics of human swing and its realization by a miniaturized humanoid robot. Since the motion of legs is the most important in the swing, the swing system can be approximated as a double pendulum. Based on Lagrangian analysis, the leg motion is designed to make the swing motion as sustained oscillation. In order to detect the peak instant of the swing and to synchronize the leg motion with the swing, we use ADXL acceleration/inclination sensor. The miniaturized humanoid in this paper has total 20 DOFs including 6 DOFs in each leg, 34cm in height, and 2kg in weight. As a result of realization of the swing by the humanoid, the sustained oscillation is verified through experiments.

The characteristics of ZnO/$PdCl_2$ gas sensor to CO gas (Co gas 검지용 ZnO/$PdCl_2$계 가스센서의 특성)

  • Hong, H.K.;Kim, B.H.;Cheon, Y.I.;Lee, C.J.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.139-142
    • /
    • 1990
  • A gas sensor, comprised of both ZnO and $PdCl_2$ powders, has been developed to sense the CO gas of low concentration (100 ppm). When the weight ratio of ZnO/$PdCl_2$ element sintered at $600^{\circ}C$ was 99.5/0.5, the maximum sensitivity to CO gas was obtained at the operating temperature of $200^{\circ}C$. Also, the response characteristics of this element were examined, and then the response time was decreased from 90 to 45 sees, with operating temperature increase in the range of $100-400^{\circ}C$.

  • PDF

H Control on the Optical Image Stabilizer Mechanism in Mobile Phone Cameras (이동통신 단말기 카메라의 손떨림 보정 장치의 H 제어)

  • Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.266-272
    • /
    • 2014
  • This study proposes a closed-loop shaping control method with $H_{\infty}$ optimization for optical image stabilization (OIS) in mobile phone cameras. The image stabilizer is composed of a horizontal stage constrained by ball bearings and actuated by the magnetic force from voice coil motors. The displacement of the stage is measured by Hall effect sensors. From the OIS frequency response experiment, the transfer function models of the stage and Hall effect sensor were identified. The weight functions were determined considering the tracking performance, noise attenuation, and stability with considerable margins. The $H_{\infty}$ optimal controller was executed using closed-loop shaping and limiting the controller order, which should be less than 6 for real-time implementation. The control algorithm was verified experimentally and proved to operate as designed.

AUTOMATIC LEVELING CONTROL SYSTEM FOR COMBINE

  • Lee, S. S.;K. S. Oh;H. Hwang;Park, D. Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.684-689
    • /
    • 2000
  • In harvesting rice and barley using combine, the inclination of the body caused by the irregular surface condition of the field and the soil sinking from the unbalanced weight during the grain collection used to make harvesting operation difficult and even impossible. To overcome such a problem, automatic leveling control system for a combine has been developed and tested. The system was composed of the sensor for measuring left and right inclination of the combine chassis and the hydraulic control system. The adaptability of the control system was investigated by analyzing system response in time domain. And the limit angle of the leveling control was set up to be +/- 7$^{\circ}$. The proposed control and hydraulic power system was implemented to the prototype combine. The prototype combine was designed and built as a separable structure with chassis and track. This paper shows results of the leveling performance tested in the laboratory and the grain field.

  • PDF

Identification of Cutting Mechanisms in Orthogonal Cutting of Glass Fiber Reinforced Composites

  • Choe Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.39-45
    • /
    • 2000
  • In recent years, composite materials such as fiber reinforced plastics (FRP) have gained considerable attention in the aircraft and automobile industries due to their light weight, high modulus and specific strength. In practice, control of chip formation appears to be the most serious problem since chip formation mechanism in composite machining has significant effects on the finished surface [1,2,3,4,5]. Current study will discuss frequency analysis based on autoregressive (AR) time series model and process characterization in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the different chip formation mechanisms and model coefficients are established.(omitted)

  • PDF