• 제목/요약/키워드: weight optimization

검색결과 1,325건 처리시간 0.024초

도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구 (Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization)

  • 조정길;구정서;정현승
    • 대한기계학회논문집A
    • /
    • 제37권9호
    • /
    • pp.1099-1107
    • /
    • 2013
  • 본 연구에서는 알루미늄 압출재로 구성된 한국형 표준전동차모델(K-EMU)의 차체를 대상으로 치수 최적설계와 구조체 소재 변경을 통한 경량화방안에 대해 연구하였다. 우선 K-EMU 차체의 하부구조, 측벽구조, 단부구조의 부재별 두께를 현재의 압출가능 두께를 적용하여 치수 최적화 기법으로 약 14.8% 경량화 하였다. 그리고 치수최적설계 된 K-EMU 차체에 유지보수성이 좋은 고장력강(SMA570)재질의 프레임타입 하부구조를 적용하여 초기 K-EMU 차체대비 약 3.8% 경량화 된 하이브리드 차체를 도출하였다. 마지막으로 샌드위치 복합재를 하부구조와 지붕구조에 적용하여 초기 K-EMU 차체대비 약 30% 경량화 된 초경량 하이브리드 차체를 도출하였다. 도출된 차체 모델들은 모두 전동차 구조체 하중시험법을 만족하였다.

언더프레임 두께 최적화에 따른 2층열차의 구조강도비교 (Strength Comparision of a Double-Deck Train Carbody by Optimization of the Underframe Thicknesses)

  • 황원주;김형진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.748-753
    • /
    • 2004
  • Aluminum alloy is very useful material for high speed transportations due to its high strength and light weight characteristics. Especially because of a weight reduction a large extrustion of aluminum alloy carbody has been manufactured. This aluminum extruded panel is a hallow extruded panel. This shape and thickness is various by designer's sense and experience and VAW's profiles. So it is important to find an optimized shape and thickness of AEP. In this study we get the AEP's thickness to minimize a weight by applying an applying an optimization algorithm. The results of the study can be used as basic guidelines double-deck trains in the future.

  • PDF

발전기세트 공진 회피를 위한 베이스프레임 최적설계에 관한 연구 (A study on the design optimization of baseframe to avoid resonance of diesel generator set)

  • 정석현;곽용석;김원현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.157-162
    • /
    • 2012
  • A structural modification of baseframe is an effective method to avoid resonance in marine diesel generator (D/G) set which consists of diesel engine, generator and baseframe. However the reinforcement with thick plates or additional parts to increase the natural frequency can be less effective because of increased weight. Especially fine control of target mode based on the experience is difficult because the weight and interference of system have to be considered. In this paper, the design optimization of baseframe was performed to reduce the resonant vibration using a gradient descent method. The design parameters such as thickness, shape and location of baseframe parts are optimized to increase the torsional natural frequency of D/G set. From the actual test, the new designed baseframe reduced the vibration level in resonance by 55% without any increase of weight and interference. interference.

  • PDF

차량 탑재형 안테나 포지셔너의 반사판 지지대 최적설계 (Design Optimization of the Support Frame of an Antenna Positioner Mounted on a Vehicle)

  • 장태호;김영식
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.411-416
    • /
    • 2014
  • In this research we present design optimization methods for a vehicle-mounted satellite antenna positioner. Our initial antenna positioner was conservatively designed to satisfy a worst case scenario where wind blew across the positioner at the speed of 120 km/h. Investigating stresses and safety based on Finite Element Methods (FEM), we find reflector support frames can be optimized to significantly reduce the weight of the positioner system. Thus, we optimize the reflector support frame from the given initial design while considering weight, maximum stress, maximum allowable deflection, cross section, and thickness. As a result, Shape C and the thickness of 2 mm are determined for the cross section of the reflector support frame. Applying this result, the weight of the new antenna positioner is 57.343 kg, which is decreased by 10.74% compared to the initial conservative design.

알루미늄 압출재를 사용한 철도차량차체의 단위 압출재 최적설계 (An Optimal Design for Truss Core Unit of Railway Carbody of Aluminum Extrusion Plate)

  • 장창두;하윤석;조영천;신광복
    • 한국철도학회논문집
    • /
    • 제6권3호
    • /
    • pp.194-202
    • /
    • 2003
  • To make railway carbody light in weight has advantages at some aspects of both manufacturing and maintenance. Recently, railway carbodys of steel structure have been lightened their weight by using aluminum extrusion plate. for the additional lightening of railway carbody, an optimal design which maintains proper strength and minimizes weight must be achieved. Optimization which is used with finite element analysis for aluminum extrusion plate has the disadvantage of consuming much time. In this paper, the method of equivalent material property which is available to FEA code is established using the method of equivalent stiffness. This method for plate is expanded into the method for railway carbody structure with plates and shells. An objective function is established for maximum stiffness of unit aluminum extrusion plate using established method of equivalent material property. We performed an multi-objective optimization using the penalty function method. As a result, recommendable shapes and sizes of unit extrusion plate for under-frame of high speed train is presented.

고속전철용 견인유도전동기의 최적화 설계에 관한 연구 (Design Optimization of a Traction Motor for High Speed Trains)

  • 권병일;박승찬;김병택;곽승용;이기호;윤종학;김근웅;이상우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.179-186
    • /
    • 1998
  • Three phase squirrel cage induction motor is generally adopted as a traction motor to drive high speed trains because of its robustness for surrounding environment and easy maintenance. In the design of traction molar, reduction of weight is very important in order to reduce kinetic energy to accelerate the vehicle. Therefore, in this paper, design variables of a preliminary designed traction motor to minimize its weight is determined using the optimization technique. Before the optimization process, rotor slot number is determined to reduce vibration and noise by the analysis of magnetic force. As a result, a design example to reduce weight by 12% than that of the preliminary designed motor is presented.

  • PDF

Conceptual Design Optimization of Tensairity Girder Using Variable Complexity Modeling Method

  • Yin, Shi;Zhu, Ming;Liang, Haoquan;Zhao, Da
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.29-36
    • /
    • 2016
  • Tensairity girder is a light weight inflatable fabric structural concept which can be used in road emergency transportation. It uses low pressure air to stabilize compression elements against buckling. With the purpose of obtaining the comprehensive target of minimum deflection and weight under ultimate load, the cross-section and the inner pressure of tensairity girder was optimized in this paper. The Variable Complexity Modeling (VCM) method was used in this paper combining the Kriging approximate method with the Finite Element Analysis (FEA) method, which was implemented by ABAQUS. In the Kriging method, the sample points of the surrogate model were outlined by Design of Experiment (DOE) technique based on Optimal Latin Hypercube. The optimization framework was constructed in iSIGHT with a global optimization method, Multi-Island Genetic Algorithm (MIGA), followed by a local optimization method, Sequential Quadratic Program (SQP). The result of the optimization gives a prominent conceptual design of the tensairity girder, which approves the solution architecture of VCM is feasible and efficient. Furthermore, a useful trend of sensitivity between optimization variables and responses was performed to guide future design. It was proved that the inner pressure is the key parameter to balance the maximum Von Mises stress and deflection on tensairity girder, and the parameters of cross section impact the mass of tensairity girder obviously.

다단계최적화방법에 의한 선박구조물의 동특성의 최적변경법에 관한연구 (Study on Optimum Modification Method of Dynamic Charcteristics of Ship Structures by Multi-level Optimization)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.574-582
    • /
    • 1999
  • This paper discusses the multi-level optimization method in dynamic optimization problems through stiffened plate of ship structures. In structural optimization the computational cost increases rapidly as the number of design variables increases. And we need a great amount of cal-culation and time on problems of modified dynamic characteristics of large and complicated struc-tures. In this paper the multi-level optimization is proposed which decreases computational time and cost. the dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. The way to apply the multi-level optimization methods in this study follow: In the first step the dynamic characteristics is controlled for the two-dimensional model of stiffened plate by sensitivity analysis and quasi-least squares methods. In the second step the cross-section of the stiffener is decided so that the weight is minimized under needed constraints by the steepest descent or ascent method. In the third the three-dimensional model is made based on the results of the first step and the second step confirmation and finer tuning of the objective function are carried out. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

An optimization framework for curvilinearly stiffened composite pressure vessels and pipes

  • Singh, Karanpreet;Zhao, Wei;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.15-30
    • /
    • 2021
  • With improvement in innovative manufacturing technologies, it became possible to fabricate any complex shaped structural design for practical applications. This allows for the fabrication of curvilinearly stiffened pressure vessels and pipes. Compared to straight stiffeners, curvilinear stiffeners have shown to have better structural performance and weight savings under certain loading conditions. In this paper, an optimization framework for designing curvilinearly stiffened composite pressure vessels and pipes is presented. NURBS are utilized to define curvilinear stiffeners over the surface of the pipe. An integrated tool using Python, Rhinoceros 3D, MSC.PATRAN and MSC.NASTRAN is implemented for performing the optimization. Rhinoceros 3D is used for creating the geometry, which later is exported to MSC.PATRAN for finite element model generation. Finally, MSC.NASTRAN is used for structural analysis. A Bi-Level Programming (BLP) optimization technique, consisting of Particle Swarm Optimization (PSO) and Gradient-Based Optimization (GBO), is used to find optimal locations of stiffeners, geometric dimensions for stiffener cross-sections and layer thickness for the composite skin. A cylindrical pipe stiffened by orthogonal and curvilinear stiffeners under torsional and bending load cases is studied. It is seen that curvilinear stiffeners can lead to a potential 10.8% weight saving in the structure as compared to the case of using straight stiffeners.

Performance-based optimization of 2D reinforced concrete wall-frames using pushover analysis and ABC optimization algorithm

  • Saba Faghirnejad;Denise-Penelope N. Kontoni;Mohammad Reza Ghasemi
    • Earthquakes and Structures
    • /
    • 제27권4호
    • /
    • pp.285-302
    • /
    • 2024
  • Conducting nonlinear pushover analysis typically demands intricate and resource-intensive computational efforts, involving a highly iterative process necessary for meeting both design-defined and requirements of codes in performance-based design. This study presents a computer-based technique for reinforced concrete (RC) buildings, incorporating optimization numerical approaches, optimality criteria and pushover analysis to automatically enhance seismic design performance. The optimal design of concrete beams, columns and shear walls in concrete frames is presented using the artificial bee colony optimization algorithm. The methodology is applied to three frames: a 4-story, an 8-story and a 12-story. These structures are designed to minimize overall weight while satisfying the levels of performance including Life Safety (LS), Collapse Prevention (CP), and Immediate Occupancy (IO). The process involves three main steps: first, optimization codes are implemented in MATLAB software, and the OpenSees software is used for nonlinear static analysis. By solving the optimization problem, several top designs are obtained for each frame and shear wall. Pushover analysis is conducted considering the constraints on relative displacement and plastic hinge rotation based on the nonlinear provisions of the FEMA356 nonlinear provisions to achieve each level of performance. Subsequently, convergence, pushover, and drift history curves are plotted for each frame, and leading to the selection of the best design. The results demonstrate that the algorithm effectively achieves optimal designs with reduced weight, meeting the desired performance criteria.