• Title/Summary/Keyword: weight optimization

Search Result 1,325, Processing Time 0.031 seconds

Multi-step design optimization of a high speed machine tool structure using a genetic algorithm with dynamic penalty (동적 벌점함수 유전 알고리즘과 다단계 설계방법을 이용한 공작기계 구조물의 설계 최적화)

  • 최영휴;배병태;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.108-113
    • /
    • 2002
  • This paper presents a multi-step structural design optimization method fur machine tool structures using a genetic algorithm with dynamic penalty. The first step is a sectional topology optimization, which is to determine the best sectional construction that minimize the structural weight and the compliance responses subjected to some constraints. The second step is a static design optimization, in which the weight and the static compliance response are minimized under some dimensional and safety constraints. The third step is a dynamic design optimization, where the weight static compliance, and dynamic compliance of the structure are minimized under the same constraints. The proposed design method was examined on the 10-bar truss problem of topology and sizing optimization. And the results showed that our solution is better than or just about the same as the best one of the previous researches. Furthermore, we applied this method to the topology and sizing optimization of a crossbeam slider for a high-speed machining center. The topology optimization result gives the best desirable cross-section shape whose weight was reduced by 38.8% than the original configuration. The subsequent static and dynamic design optimization reduced the weight, static and dynamic compliances by 5.7 %, 2.1% and 19.1% respectively from the topology-optimized model. The examples demonstrated the feasibility of the suggested design optimization method.

  • PDF

Shape and Thickness Optimization of an Aluminium Duo-type LPG Tank for a Passenger Car (승용차용 알루미늄 듀오타입 LPG 탱크의 형상 및 두께 최적설계)

  • So, Soon-Jae;Choi, Gyoo-Jae;Jang, Gang-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.131-135
    • /
    • 2013
  • In this study, to develop a light weight duo type aluminum LPG tank in stead of a conventional steel tank optimization technology is used. Two types of optimization method are carried out for internal compression test simulation of a LPG tank. The first is the thickness only optimization of LPG tank components. The second is the thickness and shape optimization. For the case of the thickness only optimization the weight reduction rate of an optimized tank compare to that of the initial design is 42%. Also 48% weight reduction was achieved for the case of the thickness and shape optimization.

Structural Design Optimization of a High Speed Machining Center by Using a Simple Genetic Algorithm (유전 알고리즘을 이용한 고속 금형센터의 구조설계 최적화)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1006-1009
    • /
    • 2000
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduced in order to minimize the static compliance, the dynamic compliance, and the weight of a high speed machining center simultaneously. Dimensional thicknesses of the eight structural members on the static force loop are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body only was reduced to 57.75% and the weight of the whole machining center was reduced to 46.2% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even though they were slightly increased than before.

  • PDF

Minimum Weight Design for Bridge Girder using Approximation based Optimization Method

  • ;Yearn-Tzuo(Andrew);Gar
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.31-39
    • /
    • 1995
  • Weight minimization for the steel bridge girders using an approximation based optimization technique is presented. To accomplish this, an optimization oriented finite element program is used to achieve continuous weight reduction until the optimum is reached. To reduce computational cost, approximation techniques are adopted during the optimization process. Constraint deletion as well as intermediate design variables and responses are also used for higher qualitv of approximations and for a better convergence rate. Both the reliability and the effectiveness of the underlying optimization method are reviewed.

  • PDF

Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Vibrations (마이크로 밀링 머신의 저진동.경량화를 위한 구조 최적설계)

  • Jang, Sung-Hyun;Kwon, Bong-Chul;Choi, Young-Hyu;Park, Jong-Kweon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • This paper presents structural design optimization of a micro milling machine for minimum weight and compliance using a genetic algorithm with dynamic penalty function. The optimization procedure consists of two design stages, which are the static and dynamic design optimization stages. The design problem, in this study, is to find out thickness of structural members which minimize the weight, the static compliance and the dynamic compliance of the micro milling machine under several constraints such as dimensional constraints, maximum compliance limit, and safety factor criterion. Optimization results showed a great reduction in the static and dynamic compliances at the spindle nose of the micro milling machine in spite of a little decrease in the machine weight.

Structural optimization with teaching-learning-based optimization algorithm

  • Dede, Tayfun;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.495-511
    • /
    • 2013
  • In this paper, a new efficient optimization algorithm called Teaching-Learning-Based Optimization (TLBO) is used for the least weight design of trusses with continuous design variables. The TLBO algorithm is based on the effect of the influence of a teacher on the output of learners in a class. Several truss structures are analyzed to show the efficiency of the TLBO algorithm and the results are compared with those reported in the literature. It is concluded that the TLBO algorithm presented in this study can be effectively used in the weight minimization of truss structures.

Structural Analysis and Dynamic Design Optimization of a High Speed Multi-head Router Machine (다두 Router Machine 구조물의 경량 고강성화 최적설계)

  • 최영휴;장성현;하종식;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.902-907
    • /
    • 2004
  • In this paper, a multi-step optimization using a G.A. (Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a 5-head route machine. Our design procedure consist of two design optimization stage. The first stage of the design optimization is static design optimization. The following stage is dynamic design optimization stage. In the static optimization stage, the static compliance and weight of the structure are minimized simultaneously under some dimensional constraints and deflection limits. On the other hand, the dynamic compliance and the weight of the machine structure are minimized simultaneously in the dynamic design optimization stage. As the results, dynamic compliance of the 5-head router machine was decreased by about 37% and the weight of the structure was decreased by 4.48% respectively compared with the simplified structure model.

  • PDF

Material Arrangement Optimization for Automotive BIW considering a Large Number of Design Variables (과다 설계변수를 고려한 차량 BIW의 소재배치 최적화)

  • Park, Dohyun;Jin, Sungwan;Lee, Gabseong;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.15-23
    • /
    • 2013
  • Weight reduction of a automobile has been steadily tried in automotive industry to improve fuel efficiency, driving performance and the production profits. Since the weight of BIW takes up a large portion of the total weight of the automobile, reducing the weight of BIW greatly contributes to reducing the total weight of the vehicle. To reduce weight, vehicle manufacturers have tried to apply lightweight materials, such as aluminum and high-strength steel, to the components of BIW instead of conventional steel. In this research, material arrangement of an automotive BIW was optimized by formulating a design problem to minimize weight of the BIW while satisfying design requirements about bending and torsional stiffness and perform a metamodel-based design optimization strategy. As a result of the design optimization, weight of the BIW is reduced by 45.7% while satisfying all design requirements.

A Study on the Shape Optimal Design of a Bogie Frame for the Reduction of its Weight (대차프레임의 중량감소를 위한 형상최적설계에 관한 연구)

  • 조우석;최경호;박정호;안찬우;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.616-619
    • /
    • 2000
  • The optimum design of a structure requires to determine economical member size and shape of a structure which satisfies the design conditions and functions. In this study, it is attempted to minimize a dead weight of the bogie frame. Therefore, shape optimization is performed for a bolster rib at first and then size optimization for the thickness of top and bottom plate. For the efficient reduction of a weight of a bogie frame, various ellipses centered at a centroid of a bolster rib are made and tried. For the shape optimization, a major axis and an eccentricity of an ellipse are chosen as design variables. From the numerical results of shape and size optimization of a bogie frame, it is known that the weight can be reduced up to 12.476 Y4717.21 kg) with displacement and stress constraints.

  • PDF

Truss Size Optimization with Frequency Constraints using ACO Algorithm (개미군락 최적화 알고리즘을 이용한 진동수 구속조건을 가진 트러스구조물의 크기최적화)

  • Lee, Sang-Jin;Bae, Jungeun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.135-142
    • /
    • 2019
  • Ant colony optimization(ACO) technique is utilized in truss size optimization with frequency constraints. Total weight of truss to be minimized is considered as the objective function and multiple natural frequencies are adopted as constraints. The modified traveling salesman problem(TSP) is adopted and total length of the TSP tour is interpreted as the weight of the structure. The present ACO-based design optimization procedure uses discrete design variables and the penalty function is introduced to enforce design constraints during optimization process. Three numerical examples are carried out to verify the capability of ACO in truss optimization with frequency constraints. From numerical results, the present ACO is a very effective way of finding optimum design of truss structures in free vibration. Finally, we provide the present numerical results as future reference solutions.