• Title/Summary/Keyword: weight matrix

Search Result 887, Processing Time 0.035 seconds

Effects of Interleukin-1${\beta}$ and Tumor Necrosis $Factor-{\alpha}$ on the Release of Collagenase and Gelatinase from Osteoblasts

  • Eun, Jong-Gab;Baek, Dong-Heon;Kim, Se-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.269-274
    • /
    • 2002
  • A large number of factors such as osteotropic hormones, cytokines, or growth factors are related to the bone remodeling which is characterized by the coupling of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Recent investigations have indicated that cytokines such as $interleukin-1{\beta}\;(IL-1{\beta})$ and tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ play a potential role in the bone resorption associated with a variety of pathological conditions such as inflammatory osteolytic disease. Collagen is the most abundant protein of the extracellular matrix of bone, and the participation of collagenase in bone resorption has been widely investigated. In this study, effects of $IL-1{\beta}$ and $TNF-{\alpha}$ on the release of collagenase from osteoblastic cells were measured. The gelatinase activity was also measured by gel substrate analysis (zymography) after electrophoresis of conditioned media of osteoblastic cell culture. $IL-1{\beta}$ increased the collagenase activity in ROS17/2.8 and HOS cell culture. $TNF-{\alpha}$ also increased the collagenase activity of osteoblastic cells. When two kinds of cytokines were treated simultaneously in the culture of osteoblastic cells, synergistic increase of collagenase activity was seen in ROS17/2.8 cells. $IL-1{\beta}$ and $TNF-{\alpha}$ significantly increased the collagenase activity after 6 hour treatment in the osteoblastic cell culture, and there was no additional increase according to the culture period. Osteoblastic cells released the gelatinase and molecular weight of this enzyme was measured about 70 KDa as assessed by zymogram. $IL-1{\beta}$ and $TNF-{\alpha}$ showed increase of the gelatinase activity produced by ROS17/2.8 and HOS cells. Taken together, this study suggested that $IL-1{\beta}$ and $TNF-{\alpha}$ can modulate bone metabolism, at least in part, by increased release of collagenase and gelatinase from osteoblasts.

A Study on Signal Sub Spatial Method for Removing Noise and Interference of Mobile Target (이동 물체의 잡음과 간섭제거를 위한 신호 부 공간기법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.3
    • /
    • pp.224-228
    • /
    • 2015
  • In this paper, we study the method for desired signals estimation that array antennas are received signals. We apply sub spatial method of direction of arrival algorithm and adaptive array antennas in order to remove interference and noise signal of received antenna signals. Array response vector of adaptive array antenna is probability, it is correctly estimation of direction of arrival of targets to update weight signal. Desired signals are estimated updating covariance matrix after moving interference and noise signals among received signals. We estimate signals using eigen decomposition and eigen value, high resolution direction of arrival estimation algorithm is devided signal sub spatial and noise sub spatial. Though simulation, we analyze to compare proposed method with general method.

Improvement of Flexural Structural Performance and Applied Section Shape for Sound Proof Wall Structures Using Glass Fiber Reinforced Polymer(GFRP) (GFRP를 활용한 도로 방음벽 구조물의 구조성능 및 단면형상 개선에 관한 연구)

  • Jung, Woo-Young;Choi, Hyun-Kyu
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • This research presents the structural performance and an improving technique for flexural capacity of road safety facilities based on the damage cases by wind pressure. Among road safety facilities, a support frame of soundproofing walls is considered as a prototype structure and its corresponding structural behaviors and section design are performed mainly by analytical and experimental studies. On the basis of analytical results, glass fiber reinforced polymer(GFRP) with an epoxy matrix which is high stiffness-to-weight ratio was used for applied one of strengthening techniques and their results shows that support frame strengthened by GFRP is the most effective compared to other cases proposed in this research for advancing its flexural improvement, Finally, optimum section design was performed analytically to evaluate wind-resistance capacity and its result would be very useful for developing a practical design guideline for Road safety facilities under strong wind.

  • PDF

Production of Extracellular Polymeric Substances by Sporulation of Bacillus sp. and Activated Sludge (Bacillus 미생물과 활성슬러지의 포자화에 따른 체외고분자물질 생성에 관한 연구)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.85-93
    • /
    • 2011
  • The structural components of microorganism are quite related to the toxin and environmental conditions. The vegetative and dormant cells are quite affected by the physical and chemical environments to survive and they will be dormant when they are in the extreme environment. The mechanism to activate the microorganisms however, is not well defined yet in the area of activation state and sporulation state through the analysis of EPS. Other than that even the main mechanism of prior to acquisition of analysis values is not well understood. Therefore, what kind of specific environment to affect the activation and sporulation will be discussed through the analysis of the extracellular polymeric substances(EPS). EPS are a high molecular weight mixture of polymers presenting both outside of cells and interior of microbial aggregates. They are a major complex materials in microbial aggregation for sustaining them together in a three dimensional matrix. Three commonly used extraction methods were applied to this study their effectiveness and quantification in extracting EPS from several Bacillus microorganisms and activated sludge. Three extraction methods used for this study are regular centrifugation with formaldehyde (RCF), Steaming, and EDTA extraction. The results of EPS contents such as the quantitative proteins, carbohydrates and the ratio of protein versus carbohydrate from the several species with the several specific methods showed in this research. This study aims to get comparable results of the quantitative production of EPS and the effectiveness of sedimentation for Bacillus microorganisms and activated sludge from several wastewater treatment plans. The results revealed that the protein amount extracted was the highest by the Steaming method of three extraction methods before sporulation and the carbohydrate amount extracted was the highest by the RCA method of three extraction methods after sporulation. The higher amount of protein compared with carbohydrate from Bacillus microorganisms affected higher sedimentation efficiency, however it could not be found the relation between the EPS production and sedimentation efficiency for the activated sludge.

Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode (전기활성 고분자 전극용 탄소입자 강화고무의 전기적 및 기계적 특성)

  • Lee, Jun Man;Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1465-1471
    • /
    • 2013
  • The electrical and mechanical properties of room temperature vulcanized (RTV) silicone rubber composites are investigated as functions of multi-walled carbon nanotube (CNT), carbon black (CB), and thinner content. The thinner is used to improve the CNT and CB dispersion in the matrix. The electrical and mechanical properties of the composite with CNT are improved when compared to the composite with CB at the same content. As the thinner content is 80 phr, the electric resistance of the composite decreases significantly with the CNT content and shows contact point saturation of CNT at 2.5 phr. As the thinner content increases, the dispersion of conductive particles improves; however, the critical CB content increases because of the reduction in the CB weight ratio. It is believed that an electrode that needs good flexibility and excellent electrical properties can be manufactured when the amount of CNT and CB are increased with the thinner content.

A Study on the Estimation Process of Material handling Equipment for Offshore Plant Using System Engineering Approach (시스템엔지니어링 기반 해양플랜트 Material handling 장비 수량산출 프로세스에 관한 연구)

  • Han, Seong-Jong;Seo, Young-Kyun;Cho, Mang-Ik;Kim, Hyung-Woo;Park, Chang-soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.785-795
    • /
    • 2019
  • This paper is a study on the modeling of the quantity estimation model for offshore plant Material handling equipment in FEED(Front End Engineering Design) verification stage using system engineering approach which is an engineering design methods. The relevant engineering execution procedure is not systemized although the operation method and Material handling equipment selection with weight and space constraints is a key part of the FEED. Using the system engineering process, the stakeholder requirements analysis process, the system requirements analysis, and the final system architecture design were sequentially performed, and the process developed through the functional development diagram and Requirement traceability matrix (RTM) was verified. In addition, based on the established process, we propose a Material handling quantity estimation model and Quantity calculation verification Table that can be applied at the FEED verification stage and we verify the applicability through case studies.

Effect of Alloying Elements and Homogenization Treatment on Carbide Formation Behavior in M2 High Speed Steels (합금성분변화와 균질화처리에 따른 M2 고속도강의 탄화물 형성거동)

  • Ha, Tae Kwon;Yang, Eun Ig;Jung, Jae Young;Park, Shin Wha
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.589-597
    • /
    • 2010
  • In the present study, the effect of variation in alloying elements on the carbide formation behavior during casting and homogenization treatment of M2 high speed steels was investigated. M2 high speed steels of various compositions were produced by vacuum induction melting. Contents of C, Cr, W, Mo, and V were varied from the basic composition of 0.8C, 0.3Si, 0.2Mn, 4.0Cr, 6.0W, 5.0Mo, and 2.0V in weight percent. Homogenization treatment at $1150^{\circ}C$ for 1.5 hr followed by furnace cooling was performed on the ingots. Area fraction and chemical compositions of eutectic carbide in as-cast and homogenized ingots were analyzed. Area fraction of eutectic carbide appeared to be higher in the ingots with higher contents of alloying elements the area fraction of eutectic carbide also appeared to be higher on the surface regions than in the center regions of ingots. As a result of the homogenization treatment, $M_2C$ carbide, which was the primary eutectic carbide in the as-cast ingots, decomposed into thermodynamically stable carbides, MC and $M_6C$. The latter carbide was found to be the main one after homogenization. Fine carbides uniformly distributed in the matrix was found to be MC type carbide and coarsened by homogenization.

Thermal Stability of Glass Powder and Rubber-Filled Phenolic Resins and Dynamic Mechanical Properties of Glass Braid/Phenolic Composites (유리분말 및 고무 충진 페놀수지의 열안정성 및 Glass Braid/페놀수지 복합재료의 동역학적 열특성)

  • Yoon, Sung Bong;Cho, Donghwan;Lee, Geon-Woong
    • Journal of Adhesion and Interface
    • /
    • v.8 no.4
    • /
    • pp.14-22
    • /
    • 2007
  • In the present study, the effect of milled glass powder and liquid-type nitrile rubber (NBR) on the thermal stability of phenolic resin and the dynamic mechanical properties of glass braid/phenolic composites has been investigated by means of thermogravimetric analysis and dynamical mechanical analysis. It was found that both milled glass power and NBR filled in the waterborne phenolic resin significantly influenced the thermal stability of phenolic resins and the storage modulus and tan delta of the composites. The presence of glass powder increased the thermal stability of the phenolic resin, whereas the presence of NBR resulted in the weight loss in the specific temperature range. The thermal stability of the phenolic resins without and with the fillers was dependent not only on the cure temperature but also on the cure time. The variation of the storage modulus and tan ${\delta}$ of strip-type glass braid/phenolic composites was also influenced with the introduction of glass powder and NBR to the phenolic matrix as well as by the cure conditions given.

  • PDF

Polycaprolactone Nanofiber Mats Fabricated Using an Electrospinning Process Supplemented with a Chemical Blowing Agent (전기방사공정과 발포제를 이용한 Polycaprolactone 나노섬유 지지체 제작)

  • Kim, Geun-Hyung;Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.458-464
    • /
    • 2008
  • A successful scaffold should have a highly porous structure and good mechanical stability. High porosity and appropriate pore size provide structural matrix for initial cell attachment and proliferation enabling the exchange of nutrients between the scaffold and environment. In this paper the highly porous scaffold of poly(${\varepsilon}$-caprolactone) electrospun nanofibers could be manufactured with an auxiliary electrode and chemical blowing agent (BA) under several processing conditions, such as the concentration of PCL solution, weight percent of a chemical blowing agent, and decomposition time of a chemical blowing agent. To attain stable electrospinnability and blown nanofiber mats having high microporosity and large pore, a processing condition, 8wt% of PCL solution and 0.5wt% of a chemical blowing agent under $100^{\circ}C$ and decomposition time of $2{\sim}3\;s$, was used. The growth characteristic of human dermal fibroblasts cells cultured in the mats showed the good adhesion and proliferation on the blown mat compared to a normal electrospun mat.

Direct-to-implant breast reconstruction following nipple-sparing mastectomy: predictive factors of adverse surgical outcomes in Asian patients

  • Su, Chun-Lin;Yang, Jia-Ruei;Kuo, Wen-Ling;Chen, Shin-Cheh;Cheong, David Chon-Fok;Huang, Jung-Ju
    • Archives of Plastic Surgery
    • /
    • v.48 no.5
    • /
    • pp.483-493
    • /
    • 2021
  • Background Direct-to-implant (DTI) breast reconstruction after nipple-sparing mastectomy (NSM) with the use of acellular dermal matrix (ADM) provides reliable outcomes; however, the use of ADM is associated with a higher risk of complications. We analyzed our experiences of post-NSM DTI without ADM and identified the predictive factors of adverse surgical outcomes. Methods Patients who underwent NSM and immediate DTI or two-stage tissue expander (TE) breast reconstruction from 2009 to 2020 were enrolled. Predictors of adverse endpoints were analyzed. Results There were 100 DTI and 29 TE reconstructions. The TE group had a higher rate of postmastectomy radiotherapy (31% vs. 11%; P=0.009), larger specimens (317.37±176.42 g vs. 272.08±126.33 g; P=0.047), larger implants (360.84±85.19 g vs. 298.83±81.13 g; P=0.004) and a higher implant/TE exposure ratio (10.3% vs. 1%; P=0.035). In DTI reconstruction, age over 50 years (odds ratio [OR], 5.43; 95% confidence interval [CI], 1.50-19.74; P=0.010) and a larger mastectomy weight (OR, 1.65; 95% CI, 1.08-2.51; P=0.021) were associated with a higher risk of acute complications. Intraoperative radiotherapy for the nipple-areolar complex increased the risk of acute complications (OR, 4.05; 95% CI, 1.07-15.27; P=0.039) and the likelihood of revision surgery (OR, 5.57; 95% CI, 1.25-24.93; P=0.025). Conclusions Immediate DTI breast reconstruction following NSM is feasible in Asian patients with smaller breasts.