• Title/Summary/Keyword: weight data

Search Result 6,990, Processing Time 0.038 seconds

Evaluation of Metal Composite Filaments for 3D Printing (3D 프린팅용 금속 입자 필라멘트의 물성 및 차폐 능력 평가)

  • Park, Ki-Seok;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2021
  • It is hard to get Filaments which are materials of the 3D printing Fused Deposition Modeling(FDM) method as radiation shielding in Korea. and also related research is insufficient. This study aims to provide basic data for the development of radiation shields using 3D printing by evaluating the physical properties and radiation shielding capabilities of filaments containing metal particles. after selecting five metal filaments containing metal particle reinforcement materials, the radiation shielding rate was calculated according to the Korean Industrial Standard's protective equipment test method to evaluate physical properties such as tensile strength, density, X-ray Diffraction(XRD), and weight measurement using ASTM's evaluation method. In the tensile strength evaluation, PLA + SS was the highest, ABS + W was the lowest, and ABS + W is 3.13 g/cm3 which value was the highest among the composite filaments in the density evaluation. As a result of the XRD, it may be confirmed that the XRD peak pattern of the particles on the surface of the specimen coincides with the pattern of each particle reinforcing material powder metal, and thus it was confirmed that the printed specimen contained powder metal. The shielding effect for each 3D printed composite filament was found to have a high shielding rate in proportion to the effective atomic number and density in the order of ABS + W, ABS + Bi, PLA+SS, PLA + Cu, and PLA + Al. In this study, it was confirmed that the metal particle composite filament containing metal powder as a reinforcing material has radiation shielding ability, and the possibility of using a radiation shielding filament in the future.

Synergistic Anti-Tumor Effect by the Combination of Cyclophosphamide and Dendritic Cell Vaccination in Murine Tumor Model that CEA Expressing (CEA 발현 마우스 종양모델에서 Cyclophosphamide와 수지상세포 백신의 병합치료에 의한 상승적인 항종양 효과)

  • Park, Mi-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.1
    • /
    • pp.38-48
    • /
    • 2022
  • Carcinoembryonic antigen (CEA) is an oncofetal antigen primarily detected in the peripheral blood of cancer patients, particularly in those with colorectal cancer. CEA is considered a valuable target for antigen-specific immunotherapy. In this study, we induced the anti-tumor immunity for CEA through the administration of a dendritic cell (DC) vaccine. However, there was a limitation in inducing tumor regression in the DC vaccinated mice. To enhance the efficacy of anti-tumor immunity in MC38/CEA2 tumor-bearing mice, we evaluated the effects of DC vaccine in combination with cyclophosphamide (CYP). Administration of CYP 100 mg/kg in mice resulted in significant inhibition of tumor growth in the 2-day tumor model, whereas a lower inhibition of tumor growth was seen in the 10-day tumor model. Therefore, the 10-day tumor model was selected for testing chemo-immunotherapy. The combined CYP and DC vaccine not only increased tumor antigen-specific immune responses but also induced synergistic anti-tumor immunity. Furthermore, the adverse effects of CYP such as weight loss and immunosuppression by regulatory T cells and myeloid-derived suppressor cells showed a significant reduction in the combined chemo-immunotherapy treatment compared with CYP alone. Our data suggest that chemoimmunotherapy with the DC vaccine may offer a new therapeutic strategy to induce a potent anti-tumor effect and reduce the adverse effects of chemotherapy.

Comparison of the acoustical performance of auditoria by shapes using acoustic simulation and listening tests (시뮬레이션과 청감실험을 통한 공연장 형태별 음향성능 비교분석)

  • Chanwoo Kang;Chan-Hoon Haan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.189-202
    • /
    • 2023
  • In this study, the acoustic performance was analyzed by architectural shapes of the hall. There are four architectural shapes of halls. They are rectangular, horseshoe, surround, and fan-shape. Eight acoustic parameters were used to determine the acoustic performance. These are RT60, EDT, C80, BQI, LF, Gmid, G125 and ITDG. First, measurement data of famous concert halls around the world were analyzed. The correlation coefficient R was obtained by regression analysis of the relationship between the subjective ranking of the halls and the acoustic parameters. It was found that BQI, G, and ITDG have higher correlation coefficients R. Also the average of acoustic parameters for each architectural shape were obtained. The total acoustic performance for each shape was calculated by using the correlation coefficient R as a weight for each acoustic parameters. As a result, rectangular halls and horseshoe halls showed good acoustical performances. Second, 3D models of each architectural shape were created and acoustic simulation had been performed. The simulation was performed by creating 3D models of each four shapes of concert halls with the same volume and sound absorption coefficient. Listening test was carried out using the sound source which is created from impulse responses of 3D model. As a result, rectangular hall and horseshoe hall showed the best performance however surround hall and fan-shaped hall showed relatively poor performance.

Prediction of Physical Properties and Shear Wave Velocity of the Ground Using the Flat TDR System (Flat TDR 시스템을 이용한 지반의 물리적 특성 및 전단파속도 예측)

  • Jeong, Chanwook;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.173-191
    • /
    • 2022
  • In this study, the shear wave velocity of the ground was measured using Flat TDR, and the precision analysis of the measured value and the verification of field applicability were performed. The shear wave velocity measurement value was derived in the field using the piezo-stack combined in the Flat TDR. analyzed. As a result of the experiment, the average value of the change in shear wave speed at the time of grout material injection was 10.15 m/s at the beginning of age, and the average value of the change in shear wave speed after the 7th to 14th days was 65.99 m/s, showing a tendency to increase with age. Also, it was found that dry density and shear wave speed increased as the water content increased on the dry side, and that the dry density and shear wave rate decreased as the water content increased on the wet side as the water content increased. The shear modulus value derived from the field test was confirmed to be a minimum of 17.36 MPa and a maximum of 28.13 MPa, confirming a measurement value similar to the reference value. Through this, it can be seen that the measured value of the shear modulus using Flat TDR is reliable data, and it can be determined that the compaction management of the site can be effectively managed in the future.

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

Estimation of Genetic Parameters for Residual feed intake in Duroc pigs (두록 품종에서 잔류사료섭취량의 유전모수 추정)

  • Song, Na-Rae;Kim, Yong-Min;Kim, Doo-Wan;Sa, Soo-Jin;Kim, Ki-Hyun;Kim, Young-Hwa;Cho, Kyu-Ho;Do, Chang-hee;Hong, Joon-Ki
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.147-153
    • /
    • 2016
  • Residual feed intake(RFI), a linear index, is a trait derived from the difference between actual feed intake and that predicted on the basis of the requirements for maintenance of body weight and production. This study was conducted to estimate RFI genetic parameters of swine in Korea, and used 8,696 of productions data of Duroc swine species which were born from 2001 to 2014. Correlation between average daily gain and RFI breeding value has been investigated by negative correlation of -0.2(P>0.01). Estimates of heritability for RFI1(residual feed intake calculated from model average dily gain) and RFI2(residual feed intake calculated from model average dily gain and backfat) were 0.37 and 0.45. From the genetic parameter estimates found in this study, selection for low RFI in Duroc pigs has the potential to improve feed conversion ratio and reduce feed intake.

Water-Environment-Economic nexus analysis of household food waste impacts: A case study of Korean households

  • Adelodun, Bashir;Cho, Gun Ho;Kim, Sang Hyun;Odey, Golden;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.148-149
    • /
    • 2021
  • Food waste has increasingly become a global issue of concern among the researchers and policymakers due to its significant environmental and economic impacts, and other associated unsustainable use of resources, including water resources. While food wastage occurs at each stage of the supply chain with food loss at the upstream and food waste at the downstream, the impacts of food waste occurring at the consumption side are enormous due to the accumulated added values. In this study, the embedded water resources, greenhouse gas emissions, and economic loss of household food waste were investigated. The primary granular data of household food waste was collected through direct sampling from 218 selected households of the Buk-gu community in Daegu, South Korea from July 2019 to May 2020. The water footprint, which was based on the water footprint concept, i.e., indirect water use, and GHG emission potential factor for each of the food items were adopted from the literature, while the retail prices and disposal cost were used to assess the economic cost of wasted food items. The water footprint, GHG emission associated with environmental impacts, and the economic cost of 42 major identified wasted food items were conducted. The findings showed that an average of 0.73 ± 0.06 kg/household/day edible food waste was generated among the sampled households, with leafy vegetable, watermelon, and rice responsible for 10, 9, and 4%, respectively, of the total weight of the 42 food wasted items. The water footprint and environmental impact of the household food waste resulted in 0.46 ± 0.04 m3 and 0.71±0.05 kg CO2eq, respectively. Beef, pork, poultry, and rice accounted for 52, 9, 5, and 4% of the total water footprint, while beef, pork, rice, tofu/cheese had 52, 8, 6, and 6% of the total emissions, respectively, embedded in the food wasted. Furthermore, the average estimated economic cost associated with wasted food items was 3855.93±527.27 Korean won, with beef, fish, and leafy vegetable responsible for 21, 13, and 10%, respectively, of the total economic cost. A combined assessment using water-environmental-economic nexus indicated that animal-based food had the highest footprint impacts, with beef, pork, and poultry indicating high indices of 0.3, 0.08, and 0.06 respectively, on a scale of 0 to 1, compared to corn and lettuce with lowest impacts of 0.02. Other food items had moderate impact values ranging from 0.03 to 0.05. This study, therefore, provides insight into the enormity of environmental and economic implications of household food waste among Korean households.

  • PDF

Bone Density, Nutrient Intake, Blood Composition and Food Habits in Non-Smoking and Non-Alcohol Drinking Male University Students (금연.금주 남자대학생의 골밀도, 영양소 섭취, 혈액 성상 및 식습관)

  • Choi, Soon-Nam;Chung, Nam-Yong
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.4
    • /
    • pp.389-399
    • /
    • 2010
  • This study was conducted in order to investigate and compare anthropometric measurements, bone density, nutrient intake, blood composition and food habits between non-smoking, non-alcohol drinking and smoking, alcohol drinking male university students in Seoul, South Korea. The data for food habits and health-related behaviors were obtained by selfadministered questionnaires. The BQIs of the subjects were measured by Quantitative Ultrasound (QUS). The subjects were divided into two groups: NSND (non-smoking and non-alcohol drinking, n=62) group and General (smoking and alcohol drinking, n=160) group. The results were analyzed using the SPSS program and were as follows: The average heights, weights, and BMIs of the two groups were 173.3 cm, 66.5 kg and 22.1 and 173.4 cm, 68.7 kg and 22.9, respectively. There were no differences between the groups regarding height, weight or BMI. SBP and DBP, however, were significantly higher in the general group than in the NSND group (p<0.01). The BQIs, Z-scores and T-scores of the two groups were 99.83, -0.23, and -0.31 and 98.24, -0.27 and -0.39, respectively, producing no significant differences between the two groups. The percentages for normal bone status, osteopenia and osteoporosis were 83.88%, 16.12% and 0.0% and 74.37%, 25.62% and 0.01%, respectively. Mean intakes of animal protein (p<0.05), animal fat (p<0.05), fiber (p<0.05), animal Ca(p<0.05), animal Fe (p<0.001), Zn(p<0.05), vitamin B1 (p<0.05) and niacin (p<0.05) were significantly different between the two groups, and mean serum levels of SGOT (p<0.01), SGPT (p<0.001), ${\gamma}$-GTP (p<0.001), triglycerides (p<0.01), total cholesterol (p<0.05) and hematocrit (p<0.05) were also significantly different between the two groups. Overall, there were no differences in meal regularity, frequency of snacking, reasons for overeating, exercise and defecation between the groups. However, favorite foods (p<0.05) and night-time meals (p<0.05) were significantly different. In conclusion, the health status of the NSND group was superior compared to the general group. Thus, students who smoke and alcohol drink should receive a practical and systematically-organized education regarding the increased health benefits of quitting smoking and alcohol drinking.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.

First Biometric Relationship and Seasonal Condition Factors of Sebastes zonatus Chen and Barsukov, 1976 and Thamnaconus modestus (Günther, 1877) Inhabiting the Waters of Ulleung-do and Dokdo (울릉도와 독도에 출현하는 띠볼락(Sebastes zonatus Chen and Barsukov, 1976)과 말쥐치(Thamnaconus modestus(Günther, 1877))의 생물역학적 관계와 계절적 비만도지수의 첫 보고)

  • Joo Myun Park;Hyun Su Rho;Hee Gap Lee;Se Hun Myoung;Laith A. Jawad;Jae Ho Lee;Chang Geun Choi
    • Korean Journal of Ichthyology
    • /
    • v.35 no.1
    • /
    • pp.50-56
    • /
    • 2023
  • This study is the first to report the biometric information between the length and weight relationships (LWR) and seasonal body condition factors (K) of Sebastes zonatus Chen & Barsukov, 1976 and Thamnaconus modestus (Günther, 1877) inhabiting the waters off Ulleung-do and Dokdo. The LWRs in spring and summer, and all seasons combined were highly correlated (r2>0.959), and the regression slopes of LWRs were significantly different between the spring and summer in both species. The body conditions of the two fish were significantly higher during the spring than during the summer, reflecting their fatness in relation to spawning. The results from this study contribute to the understanding of the biology of S. zonatus and T. modestus and provide useful data for the development of conservation and management plans for these species.