• Title/Summary/Keyword: weed inhibition

Search Result 153, Processing Time 0.017 seconds

Inhibition of protoporphyrinogen oxidase activity and selectivity of new compound EK-5439 (신규 화합물 EK-5439의 선택성 및 protoporphyrinogen oxidase 저해활성)

  • Hong, K.S.;Kim, H.R.;Jeon, D.J.;Lee, B.H.;Song, J.H.;Cho, K.Y.;Hwang, I.T.
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.2
    • /
    • pp.79-87
    • /
    • 2004
  • 3-Chloro-2-[4-chloro-2-fluoro-5-(5-methyl-3-phenyl-4,5-dihydroisoxazol-5-ylmethoxy)-phenyl]-4,5,6,7-tetrahy dro-2H-indazole(EK-5439) demonstrated rice selectivity and herbicidal activity on annual weeds, such as Echinochloa oryzicola, Monochoria vaginalis, Lindernia pyxidaria, Rotala indica, Aneilema keisak, Cyperus difformis, and Ludwigia prostrata at doses of 16-63 g a.i./ha. However, the application window was limited from pre-emergence to 5 days after transplanting. The control efficacy of EK-5439 on barnyardgrass was 4 times higher than that of oxadiazon. EK-5439 was excellently safe to the 16 different transplanted rice cultivars treated 2 days after transplanting. These compounds have the mechanism of action on the chlorophyll biosynthesis like protoporphyrinogen IX oxidase inhibitors.

Mechanism of Sulfonylurea Herbicide Resistance in Broadleaf Weed, Monochoria korsakowii (광엽잡초 물옥잠의 Sulfonylurea 제초제에 대한 저항성 작용기작)

  • Park, Tae-Seon;Lhm, Yang-Bin;Kyung, Kee-Sung;Lee, Su-Heon;Park, Jae-Eup;Kim, Tae-Wan;Kim, Kil-Ung
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.239-247
    • /
    • 2003
  • This experiment was carried out to study the resistant mechanism of sulfonylurea(SU) herbicides to Monochoria korsakowii occurring in the rice fields of Korea. The activity of acetolactate synthase(ALS), absorption and translocation of $[^{14C}]$bensulfuron-methyl, and DNA sequence of ALS genes were studied. The apparent SU resiatance to Monochoria korsakowii was confirmed in greenhouse testes. Fresh weight accumulation$(GR_{50})$ in the resistant biotype was about 5- to 64-fold higher in the presence of six SU herbicides compared to the susceptible biotype. The ALS activity isolated from the resistant biotype to herbicides tested was less sensitive than that of susceptible biotype. The concentration of herbicide required for 50% inhibition of ALS activity$(I_{50})$ was 14- to 76-fold higher as compared to the susceptible biotype. No differences were observed in the rates of $[^{14C}]$bensulfuron uptake and translocation. However, the DNA sequence from the resistant biotype differed from that of the susceptible biotype by single nucleotide substitution at three amino acid each in the middle region excluding the ends of ALS genes. We found three point mutations causing substitution of serine for threonine at amino acid 168, arginine for histidine at amino acid 189, and a aspartic acid for phenylalanine at amino acid 247, respectively, in the resistant biotype.

Antagonistic Interaction between Quinclorac and Bensulfuron-methyl on Growth of the Rice Plants (Quinclorac과 Bensulfuron-methyl의 혼합처리(混合處理)에서 벼의 생장(生長)에 대한 제초제간(除草劑間) 길항작용(拮抗作用))

  • Kwon, Oh-Yeon;Kwon, Yong-Woong
    • Korean Journal of Weed Science
    • /
    • v.17 no.3
    • /
    • pp.288-294
    • /
    • 1997
  • Field and pot expeiments were carried out to evaluate the interaction between quinclorac and bensulfuron-methyl on growth of the rice plants(Oryza sativa L. cv. Choocheongbyeo) at 20, 45, 65 days-old stages. Quinclorac and bensulfuron-methyl showed antagonistic interaction at both stages, which were detected by the Chisaka's method at isobles of 10% growth inhibition. The antagonism indices were -0.63 and -1.67 at 20 and 65 days-old seedling stages, respectively. Leaf-rolling of rice occurred when quinclorac was applied at 600g ai/ha or more at 20 days-old seedling stage, while it occured at the dose of 900g ai/ha at 65 days-old stage. Bensulfuron-methyl reduced plant height and dry weight as well as tiller production at both stages. Leaf-rolling of rice was reduced when mixture of quinclorac and bensulfuron-methyl was applied due to antagonism of the two herbicides. High temperatures increased the phytotoxicity of bensulfuron-methyl, while the phytotoxicity caused by quinclorac alone was not responsive to temperature. The antagonistic effect between quinclorac and bensulfuron-methyl increased at low temperature as tested by the Colby's method.

  • PDF