• Title/Summary/Keyword: wedge-tendon interface

Search Result 1, Processing Time 0.013 seconds

Constitutive law for wedge-tendon gripping interface in anchorage device - numerical modeling and parameters identification

  • Marceau, D.;Fafard, M.;Bastien, J.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.609-628
    • /
    • 2003
  • Mechanical anchorage devices are generally tested in the laboratory and may be analyzed using the finite element method. These devices are composed of many components interacting through diverse contact interfaces. Generally, a Coulomb friction law is sufficient to take into account friction between smooth surfaces. However, in the case of mechanical anchorages, a gripping system, named herein the wedge-tendon system, is used to anchor the prestressing tendon. The wedge inner surface is made of a series of triangular notches designed to grip the tendon. In this particular case, the Coulomb law is not adapted to simulate the contact interface. The present paper deals with a new constitutive contact/gripping law to simulate the gripping effect. A parameter identification procedure, based on experimental results as well as on a finite element/neural network approach, is presented. It is demonstrated that all parameters have been selected in a satisfactory way and that the proposed constitutive law is well adapted to simulate the wedge gripping effect taking place in a mechanical anchorage device.