• Title/Summary/Keyword: web shear

Search Result 353, Processing Time 0.021 seconds

Nonlinear numerical model of headed shear stud anchors for composite open web steel joists

  • Yanez, Sergio J.;Dinehart, David W.;Pina, Juan Carlos;Guzman, Carlos Felipe
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.545-555
    • /
    • 2022
  • Empirical relationships that capture the nonlinear behavior of headed steel shear stud anchors have been derived from standard push out tests, where the specimens are comprised of large wide flanged steel sections attached to flat concrete slabs via the anchors. However, many composite systems used in practice utilize much smaller steel members and/or steel decking as part of the slab system. Composite open web steel joist systems generally include both of these elements and consequently the nonlinear performance ofthe anchor is not accurately represented by existing models. In this paper, a new empirical relation is presented for open web steel joist systems based on experimental results from a modified push out test that more realistically represent a composite open web steel joist system. The methodology for obtaining the proposed nonlinear function where the response of the system is characterized by two parameters(α and β) is presented. The two-step process for obtaining the two parameters is described and the empirical relation is calibrated with the experimental data. In comparison with existing expressions, the new proposal herein more accurately predicts the high initialstiffness of the system and overall nonlinear system performance.

Shear response of lean duplex stainless steel plate girders

  • Armoosh, Salam R.;Khalim, A.R.;Mahmood, Akram Sh.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1267-1281
    • /
    • 2015
  • Carbon steel plate girders have been used on a large scale in the building industry. Nowadays, Lean Duplex Stainless Steel (LDSS) plate girders are gaining popularity as they possess greater strength and are more impervious to corrosion than those that are constructed from carbon steel. Regardless of their popularity, there is very limited information with regards to their shear behavior. In this paper, the non-linear finite element analysis was employed to investigate the shear behavior of LDSS plate girders. Parameters considered were the web thickness, the flange width, and the girders aspect ratio. The analysis revealed that although the shear behavior of the LDSS girders was no different from that of carbon steel plate girders, it had obviously been affected by the non-linearity of the material. Furthermore, the selected parameters were found to pronounce effect on the shear capacity of the LDSS girders. That is, the shear capacity increased considerably with web thickness, and increased slightly with flange width. However, it was reduced as the aspect ratio increased. Comparisons between the finite element analysis failure loads and those predicted by the current European Code of Practice revealed that the latter underestimated the shear strength of the LDSS plate girders.

Shear Behavior of Reinforced Concrete Deep Beams with Web Openings (개구부를 갖는 철근콘크리트 깊은 보의 전단거동)

  • 이진섭;김상식
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.619-628
    • /
    • 2001
  • In building construction, openings of the story-height deep beams are usually required for accessibility and service lines such as air conditioning ducts, drain pipes and electric units. It is known that the main parameters affecting the load bearing capacity of deep beams with web openings are size, shape, location and reinforcements of openings. However, there have been no pertinent theories and national design codes for predicting ultimate shear strength of reinforced concrete deep beams with web openings. In this study, the shear behavior of simply supported reinforced concrete deep beams with web openings subject to concentrated loads has been scrutinized experimentally. A total of 34 specimens, the geometry of openings, its reinforcements and shear span to depth ratio, being taken as the experimental variables, has been cast and tested in the laboratory. The effects of these structural parameters on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear mechanism and the ultimate strength of specimens varies according to the location of openings, by which the formation of compression struts between the loading points and supports are deterred. All of the test results of specimens have been compared with the formulas proposed by previous researchers. The results were closely coincident with the formulas given by Ray and Kong's equation except for some X series specimens having a larger dimension of openings beyond the geometric limits of proposed equations.

Shear Buckling Behavior for Trapezoidal Corrugated Webs for Bridges (파형강판 복부의 전단좌굴거동 연구)

  • 이필구;윤태양;이학은;이승록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.513-520
    • /
    • 2003
  • As a trapezoidal corrugated steel plate has the sufficient stiffness out of plane direction without shear stiffener or thick plate, a use in the web of bridge structure is on the increase. However, there are no domestic design guides for shear buckling strength of corrugated plates. Therefore, foreign design specifications are analyzed about application methods and a numerical parametric study is used to get the relationship of the shear strength and geometric boundary conditions for corrugated plates. Elastic buckling finite element analysis is executed through eigenvalue analysis using the eight nodes five freedoms thin shell element. Parameters such as the width and height of panel and the thickness and height of web, are determined considering the factors to influence on the buckling of corrugated plate. Accuracy of shear buckling analysis is evaluated with theory of foreign buckling equations.

  • PDF

Parametric study of shear strength of CFRP strengthened end-web panels

  • Shalaby, Haitham A.;Hassan, Maha M.;Safar, Sherif S.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • Strengthening of civil infrastructure with advanced composites have recently become one of the most popular methods. The use of Fiber Reinforced Polymer (FRP) strips plates and fabric for strengthening of reinforced concrete structures has well established design guidelines and standards. Research on the application of FRP composites to steel structures compared to concrete structures is limited, especially for shear strengthening applications. Whereas, there is a need for cost-effective system that could be used to strengthen steel high-way bridge girders to cope with losses due to corrosion in addition to continuous demands for increasing traffic loads. In this study, a parametric finite element study is performed to investigate the effect of applying thick CFRP strips diagonally on webs of plate girders on the shear strength of end-web panels. The study focuses on illustrating the effect of several geometric parameters on nominal shear strength. Hence, a formula is developed to determine the enhancement of shear strength gained upon the application of CFRP strips.

Seismic behaviour of steel beam-to-column joints with column web stiffening

  • Ciutina, A.L.;Dubina, D.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.493-512
    • /
    • 2006
  • The present paper summarizes the experimental research carried out at the "Politehnica" University of Timisoara, Romania, with the scope of investigating the influence of different column web stiffening solutions on the performance of beam-to-column joints of Moment Resisting Steel Frames. The response parameters, such as resistance, rigidity and ductility were examined. Five different types of panel web stiffening were compared with regard to a reference test. A quasi-linear relationship between the moment capacity and the total shear area of the web panel was observed from the experimental tests while the initial rigidity increased non-proportionally with the same area. Comparisons are presented of the experimental tests with the mathematical model developed by Krawinkler and with the model stipulated in Eurocode 3 Part 1.8. These comparisons showed a generally good agreement in the case of moment capacity, while the computed rigidities were always greater than the experimental rigidities.

Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory (등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석)

  • Choi, In-Sik;Yeo, In-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1068-1073
    • /
    • 2007
  • 3D finite element analyses of a corrugated steel web girder and a steel truss web girder are conducted to investigate the static and dynamic behaviour of the hybrid girders. And the analyses results are compared with those by the equivalent beam theory. The equivalent theory is a theory that all section properties of a truss structure are replaced by section properties of a beam including the shear coefficient. When applying the equivalent beam theory, the shear coefficient of the corrugated steel web girder is estimated as the area ratio of total section to web section and that of the steel truss web girder is calculated by the equation proposed by Dewolf. Static deflections and natural frequencies by 3D finite element analyses and the those by the equivalent beam theory are relatively in good agreement.

  • PDF

Parametric Study on Buckling Behavior of Sinusoidal Corrugated Web Girder (파형 강판 웨브를 갖는 보의 매개변수 해석 연구)

  • Park, Geun-Woo;Lee, Seo-Haeng;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.101-108
    • /
    • 2018
  • The purpose of this study was to analyze some parameters' effects on buckling behavior of Sinusoidal Corrugated Web using finite element analysis program. Studying buckling behavior is one of the most important things to design sinusoidal corrugated web girders and predict the shear performance. In this paper, Four parameters of Sinusoidal Corrugated Web, which are thickness($t_w$), height($h_w$), wave height(${\alpha}_3$) and wave length(w), were selected for buckling behavior analysis. Via buckling analysis, it is shown that $t_w$, $h_w$ and ${\alpha}_3$ have influence on shear buckling stress, Initial stiffness and reduced strength after buckling.

An Innovative shear link as damper: an experimental and numerical study

  • Ghamari, Ali;Kim, Young-Ju;Bae, Jaehoon
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.539-552
    • /
    • 2022
  • Concentrically braced frames (CBFs) possess high stiffness and strength against lateral loads; however, they suffer from low energy absorption capacity against seismic loads due to the susceptibility of CBF diagonal elements to bucking under compression loading. To address this problem, in this study, an innovative damper was proposed and investigated experimentally and numerically. The proposed damper comprises main plates and includes a flange plate angled at θ and a trapezius-shaped web plate surrounded by the plate at the top and bottom sections. To investigate the damper behaviour, dampers with θ = 0°, 30°, 45°, 60°, and 90° were evaluated with different flange plate thicknesses of 10, 15, 20, 25 and 30 mm. Dampers with θ = 0° and 90° create rectangular-shaped and I-shaped shear links, respectively. The results indicate that the damper with θ = 30° exhibits better performance in terms of ultimate strength, stiffness, overstrength, and distribution stress over the damper as compared to dampers with other angles. The hysteresis curves of the dampers confirm that the proposed damper acts as a ductile fuse. Furthermore, the web and flange plates contribute to the shear resistance, with the flange carrying approximately 80% and 10% of the shear force for dampers with θ = 30° and 90°, respectively. Moreover, dampers that have a larger flange-plate shear strength than the shear strength of the web exhibit behaviours in linear and nonlinear zones. In addition, the over-strength obtained for the damper was greater than 1.5 (proposed by AISC for shear links). Relevant relationships are determined to predict and design the damper and the elements outside it.

A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs (제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구)

  • Gill, Heung Bae;Lee, Seung Rok;Lee, Hak Eun;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.591-601
    • /
    • 2003
  • Because of their high out-of-plane and in-planes strength, trapezoidally corrugated plates have been increasingly used in buildings and bridges. If corrugated plates are used as the web of plate girders or prestressed concrete box girders, the flanges take most of the bending stress. On the other hand, the corrugated plate web supports shear stress due to the accordion effect. The corrugated plate web could fail by three different buckling modes: global, local, or interactive shear buckling. To determine the effects of geometric parameters on the buckling capacity of the corrugated plates, a parametric study was performed using finite dement method. The analysis results showed that the buckling capacity and modes depend on individual parameters as well as combinations of parameters.