• Title/Summary/Keyword: web databases

Search Result 633, Processing Time 0.026 seconds

Construction of Gene Network System Associated with Economic Traits in Cattle (소의 경제형질 관련 유전자 네트워크 분석 시스템 구축)

  • Lim, Dajeong;Kim, Hyung-Yong;Cho, Yong-Min;Chai, Han-Ha;Park, Jong-Eun;Lim, Kyu-Sang;Lee, Seung-Su
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.904-910
    • /
    • 2016
  • Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The gene network analysis has been performed by diverse types of methods such as gene co-expression, gene regulatory relationships, protein-protein interaction (PPI) and genetic networks. Moreover, the network-based methods were described for predicting gene functions such as graph theoretic method, neighborhood counting based methods and weighted function. However, there are a limited number of researches in livestock. The present study systemically analyzed genes associated with 102 types of economic traits based on the Animal Trait Ontology (ATO) and identified their relationships based on the gene co-expression network and PPI network in cattle. Then, we constructed the two types of gene network databases and network visualization system (http://www.nabc.go.kr/cg). We used a gene co-expression network analysis from the bovine expression value of bovine genes to generate gene co-expression network. PPI network was constructed from Human protein reference database based on the orthologous relationship between human and cattle. Finally, candidate genes and their network relationships were identified in each trait. They were typologically centered with large degree and betweenness centrality (BC) value in the gene network. The ontle program was applied to generate the database and to visualize the gene network results. This information would serve as valuable resources for exploiting genomic functions that influence economically and agriculturally important traits in cattle.

Analyzing Studies on Teacher Professional Vision: A Literature Review ('수업을 보는 눈'으로서 교사의 전문적 시각에 대한 기존 연구의 특징과 쟁점 분석)

  • Yoon, Hye-Gyoung;Park, Jisun;Song, Youngjin;Kim, Mijung;Joung, Yong Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.765-780
    • /
    • 2018
  • The purpose of this study is to synthesize the theoretical perspectives, research methods, and research results of teachers' professional vision by reviewing and analyzing previous research papers and to suggest implications for science teacher education and research. Three databases were used to search peer reviewed journal articles published between 1997-2017, which include 'teachers' and 'professional vision' explicitly in abstracts and empirical studies only. 21 articles in total were analyzed and review results are as follows. First, researchers regarded professional vision as a new concept of teacher professionalism. Previous research viewed professional vision as integrated structure of teachers' knowledge or ability activated at specific moment. Second, the analytical framework of professional vision included two aspects; 'selective attention' and 'reasoning'. Several aspects of lessons or the desirable teaching and learning factors are suggested as the subcategories of selective attention. Hierarchical levels or independent reasoning ability factors are suggested as the subcategories of reasoning process. Third, research on teachers' professional vision focused more on middle school teachers than elementary teachers and on various subject areas. Most studies used video clips and more cases of using videos of non-participants were found. In case of measurement of professional vision, most quantitative scoring methods were whether the responses of experts and teachers on video clips were consistent. Last, most studies examined or assessed teachers' professional vision. It is reported that in-service teachers' professional vision was evaluated higher than novice teachers' and using video clips were effective to examine and improve teachers' professional vision.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.