• Title/Summary/Keyword: web buckling

Search Result 217, Processing Time 0.019 seconds

Elastic Buckling of Elastically Restrained Orthotropic Plate with a Longitudinal Stiffener under In-plane Linearly Distributed Load (면내 선형분포하중을 받으며 두 변이 탄성구속되고 수평보강된 직교이방성판의 탄성좌굴)

  • 권성미;정재호;채수하;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.17-20
    • /
    • 2001
  • This paper presents the results of an elastic buckling analysis of elastically restrained orthotropic plate with a longitudinal stiffener under in-plane linearly distributed load. It is assumed that the loaded edges of web plate are simply supported and other two edges are elastically restrained against rotation. The stiffener is modeled as a beam element and its torsional rigidity is neglected. For the buckling analysis Lagrangian multiplier method is employed. The effects of restraint and longitudinal stiffener are presented in a graphical form.

  • PDF

Elastic Shear Buckling of Transversely Stiffened Orthotropic Web Plates (수직보강된 직교이방성 복부판의 전단탄성좌굴)

  • S.J. Yoon;J.H. Jung
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.37-43
    • /
    • 2000
  • In this paper an analytical investigation pertaining to the elastic shear buckling behavior of transversely stiffened orthotropic plate under in-plane shear forces is presented. All edges of plate are assumed to be simply supported and the evenly placed stiffener is considered as a beam element neglecting its torsional rigidity. For the solution of the problem Rayleigh-Ritz method is employed. Using the derived equation, the limit of buckling stress of transversely stiffened plate is suggested as a graphical form. Based on the limit of buckling stress of stiffened plate, graphical form of results for finding the required stiffener rigidity is presented when one and two stiffeners are located, respectively.

  • PDF

The Need for Research about Buckling Strength of Arch and Beam (보와 아치의 좌굴강도에 관한 연구의 필요성)

  • Lim, Nam-Hyoung;Lee, Chin-Ok;Ryu, Hyo-Jin;Lee, Woo-Chul;Koo, So-Yeun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.223-226
    • /
    • 2007
  • In current specification, modification factor(B) for web-tapered beam is used to account for the stress gradient and the restraining effect for adjacent spans. However, because these effects are considered together in modification factor, this paper revaluate the accuracy of the modification factor used in current specification. Also this paper investigate the flexural torsional buckling strength of laterally fixed thin-walled arch with doubly symmetric section using the analytical and numerical method. From this investigate the concept of effective length to consider the out-of-plane boundary condition for straight column or beam is not applicate for the flexural-torsional buckling of laterally fixed arches.

  • PDF

Out-of-plane buckling and bracing requirement in double-angle trusses

  • Chen, Shaofan;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.261-275
    • /
    • 2003
  • Truss members built-up with double angles back-to-back have monosymmetric cross-section and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry. Approximate formulae for calculating the buckling capacity are presented in this paper for routine design purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of initial crookedness of compression chord is taken into account. Formulae are presented to compute the required stiffness of chord member and to determine the effective length factor for inadequately constrained compressive diagonals.

Buckling behavior of cold-formed steel lipped channel beam-column members under monotonic and cyclic loadings

  • Yilmaz Yilmaz;Serhat Demir;Ferhan Ozturk
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.435-446
    • /
    • 2024
  • The use of cold-formed steel members is increasing day by day, especially in regions where earthquake effects are intensively experienced. Among cold-formed steel members (CFS), "channel" members are used more than other crosssectional members, especially in buildings or industrial structures. In recent years, several studies have been carried out on the axial load and flexural performance of these members under monotonic loading. In this study, CFS beam-column members were cyclically and monotonically loaded under combined axial load and biaxial bending moments, and their buckling behavior, load bearing capacity, stiffness, ductility, and energy absorption capacity were determined. For this purpose, monotonic and cyclic loading experiments were carried out on 30 CFS channel members at 15 different eccentricities. Then, material properties were determined by axial monotonic tensile and very low cycle fatigue tests for use in numerical studies. From the experimental results, the buckling modes, bearing capacities, ductility, stiffness, and energy absorption capacities of the members were obtained. The characteristics of the members were compared according to the stress state of the lips. According to the data obtained from the displacement transducer placed on the lips and on the back of the web, information about the buckling mode and curvature of the members was obtained. Finally, monotonic, and cyclic loading results were compared to determine the differences in the buckling behavior of the members.

Torsional and Warping Constants of I-shaped Plate Girders with a Sine Corrugated Web (Sine 파형 복부판을 갖는 I형 플레이트 거더의 비틂 및 뒴 상수)

  • Kim, Seungjun;Jeon, Jin Su;Won, Deok Hee;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.347-354
    • /
    • 2012
  • In this study, the equations of torsional and warping constants of a I-shaped plate girder with sine corrugated web are suggested. Because of geometric characteristics of the section, a I-shaped plate girder with corrugated web shows high out-of-plane stiffness, shear strength, and torsional stiffness. Torsional constant and warping constant definitely affect lateral-torsional buckling loads. Therefore, exact estimation of the sectional properties is quite important. But, it is difficult to estimate these properties by former methods. So, this study was focused on suggestion of the rational equations to calculate torsional and warping constants. In order to investigate the effects of geometric characteristics of sine-corrugated webs on torsional stiffness and warping torsional constant, finite element analyses for pure torsional behavior and warping torsional behavior of I-shaped plate girders were performed. By regression analyses of the analytical results, rational equations of the torsional constant and warping constant were suggested. Suggested equations for the properties were validated based on the analytical results of lateral-torsional buckling of simply supported I-shaped plate girder. By suggested equations, torsional and warping constants of I-shaped plate girders with a sine-corrugated web can be rationally estimated and more exact lateral-torsional buckling load can be simply calculated.

A Study on Flexural Strength and Buckling Behavior of Compressional Flange for Box Girder (상자형의 압축플랜지 휨강도 및 좌굴거동에 관한 연구)

  • Kim, Hong-Jun;Jung, Hee-Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.679-690
    • /
    • 2011
  • Since the elastic buckling problem of the plate has been studied both experimentally and theoretically, the buckling loads with various boundary conditions and loads can be easily determined. Currently, flange and web design specifications are based on the buckling stress and the post-buckling strength and include a safety-factor. Therefore, this study extended suchresearch to the linear buckling theory with ideal conditions and to the ultimate state with post-buckling. The current specifications are based on elastic buckling stress; and therefore, further research on the ultimate behavior of the plate is required. The ultimate strength design concept, which allows finite deflection, is used in this studyto maximize the post-buckling strength in a steel box. An empirical equation, which provides the ultimate strength of the steel box due to the change in the slenderness and optimum rigidity, are suggested based on the experiment results. Moreover, the appropriateness of the current design specifications was analyzed and discussed.

Experimental Study on Ultimate Shear Behaviour of Longitudinally Stiffened Plate Girder Web Panels (수평보강재가 있는 판형복부판의 극한전단거동에 관한 실험연구)

  • Lee, Myung Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.167-179
    • /
    • 1999
  • The thin web panels of plate girders often need to be reinforced with transverse stiffeners to increase the shear strength. Since early 1960s, extensive researches have been conducted on the ultimate shear strength of plate girder webs with transverse stiffeners. These results have been first adopted into AASHTO(1970) and British Standard(1983) Specifications for the determination of the ultimate shear strength of transversely stiffened web panels. Although the main purposes of reinforcing web panels with longitudinal stiffeners are to increase the buckling strength and to control the lateral deflections due to bending, it has been reported that the longitudinal stiffeners increase the shear strength. However lack of studies has kept the effects of the longitudinal stiffeners on the ultimate shear strength from the design of plate girder web panels. In the present study an experimental investigation is carried out in order to assess the increment of the ultimate shear strength of shear web panels due to the longitudinal stiffeners and the results are compared with the existing failure theories.

  • PDF

A Study for an Evaluation of Flexural Strength of Plate Girders Reinforced with One Line of Longitudinal Stiffeners (수평보강재로 1단 보강된 플레이트거더의 휨강도 평가 방안 연구)

  • Kim, Byung Jun;Park, Yong Myung;Mykyta, Kovalenko;Cho, Kwang Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.281-289
    • /
    • 2017
  • The current AASHTO LRFD and Eurocode 3 specifications have been found to underestimate the flexural strength of longitudinally reinforced plate girders. This is because the web-flange interaction is not considered appropriately when a web is reinforced. The buckling strength of compression flange increases due to the improved rotational restraint to the compression flange. Also, the compression flange and the longitudinal stiffener could constrain the web rotation, so that a certain area of the web reaches yield strength. In this study, a model for evaluating the flexural strength is proposed for plate girders reinforced with one line of longitudinal stiffeners, considering the increase of the buckling strength of the compression flange and the actual stress distribution of the web. The flexural strengths of the conventional steel(SM490) and the high-strength steel(HSB800) plate girders were evaluated from the nonlinear analysis and the applicability of the proposed model was analyzed.

Local buckling by lifting and lowering supports in steel box girder bridge (국부좌굴을 고려한 지점 상승 하강 강상자형교)

  • 구민세;정재운;나귀태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.227-234
    • /
    • 2001
  • The lifting and lowering supports method was recently developed in steel box girder bridge. It has many advantages by lifting and lowering of inner supports and filled concrete. This method reduces an amount of steel and height of girders. It is one of the methods used to effectively increase the use of structural material. However, if there is too much lifting of inner supports, it is possible to cause buckling of the compression flange or web panel. Therefore it needs a proper number of longitudinal and transvers stiffener.

  • PDF