• 제목/요약/키워드: weaving

검색결과 464건 처리시간 0.025초

Mesoscopic Traffic Simulator를 이용한 고속도로 지정체 관리방안평가 (Evaluation of Freeway Congestion Management Using Mesoscopic Traffic Simulator)

  • 최기주;이승환
    • 한국시뮬레이션학회논문지
    • /
    • 제10권3호
    • /
    • pp.47-58
    • /
    • 2001
  • Evaluation of Freeway Congestion Management Using Mesoscopic Traffic Simulator A mesoscopic simulation study to measure the effects of trip generation caused by rampant expansion of residential area around the Kyungbu corridor has been conducted. Some alternatives, which seem to be judgememtally plausible and technically feasible to mitigate such congestion, have been carefully examined and evaluated by the simulation model called INTEGRATION. Alternatives are mostly network improvements. Banpo IC dedicated ramp construction (A1), Seocho IC TSM based weaving elimination (A2), dedicated local and express separation over Seocho-Yangjae segment (A3), Heonleung IC (A4) and Daewang If installations (A5), Pangyo IC improvement (A6), Baikhyun IC (A7) and Dongbaek IC installations (A8) along with Shingal-Pangyo segment capacity addition (A9). The most capital intensive ones are A9, A5, and A4 in that order. A1, A6, A7, and A8 are short in distance but they are also capital intensive and need some construction periods. The least capital driven alternatives are h2 and A3, the h2 is easier to do, but A3 needs traffic diversion scheme during construction. The A1, A7, and A8 have been identified cost effective in terms of speed increase and travel time saving. Along with these results, some limitations and future research agenda regarding simulation have also been presented.

  • PDF

조선시대 관영건축의 벽체에 사용된 중깃(中衿)과 외엮기 기법에 대한 연구 (A Study on the Method of Oeyeokki and Joongkit in Earth Wall of Government Constructions in the period of Chosun Dynasty)

  • 이승환;장헌덕
    • 건축역사연구
    • /
    • 제28권4호
    • /
    • pp.27-36
    • /
    • 2019
  • The traditional earth wall structure consists of a Joongkit(a small reinforcing post inside a wall) and a Oe(a miscellaneous tree, rendered laths) based on the space between the columns and applying the soil. The members who act as the base layer before applying soil used joongkit, sakmok, and oemok, which are known to correspond to the current joongkit, gasisae, and lath strips. This study was designed to understand the following through an analysis of the ancient texts, such as uigwe. Through a study on the usage and specifications of joongkit recorded on the uigwe, I wanted to reveal that joongkit is a material that has different specifications, functions, and installation techniques from current joongkit. The purpose of this study was to present the differences and technical features of the components of use for two types of oeyeokki technique of traditional wall. In addition, the items to be considered at the actual cultural heritage repair site were reviewed in the restoration of the earth wall weaving technique.

UHMWPE/CFRP 적층하이브리드 복합재의 층간 Mode I 에너지해방율에 미치는 초기균열길이의 영향 (Initial Crack Length Effect for the Interlaminar Mode I Energy Release Rate on a Laminated UHMWPE/CFRP Hybrid Composite)

  • 송상민;강지웅;권오헌
    • 한국안전학회지
    • /
    • 제34권3호
    • /
    • pp.1-7
    • /
    • 2019
  • A variety of composite materials are applied to industries for the realization of light weight and high strength. Fiber-reinforced composites have different strength and range of application depending on the weaving method. The mechanical performance of CFRP(Carbon Fiber Reinforced Plastic) in many areas has already been demonstrated. Recently, the application of hybridization has been increasing in order to give a compensation for brittleness of CFRP. Target materials are UHMWPE (Ultra High Molecular Weight Polyethylene), which has excellent cutting and chemical resistance, so it is applied not only to industrial safety products but also to places that lining performance is expected for household appliances. In this study, the CFRP and UHMWPE of plain weave, which are highly applicable to curved products, were molded into laminated hybrid composite materials by autoclave method. The mechanical properties and the mode I failure behavior between the layers were evaluated. The energy release rate G has decreased as the initial crack length ratio increased.

A Tent For The Afterlife? Remarks on a Qinghai-Sichuanese Panel

  • GASPARINI, Mariachiara
    • Acta Via Serica
    • /
    • 제6권2호
    • /
    • pp.61-90
    • /
    • 2021
  • Recent excavations in Qinghai Province, China, have disclosed textiles and artworks from Tuyuhun-Tubo (Tibetan) tombs, dated to the 7th-9th centuries, that suggest artistic and cultural exchanges along an external southern branch of the main Silk Road, between Gansu and Sichuan Provinces, across the Qinghai-Tibetan plateau toward the Himalayas. Many similar textiles, possibly from this area, have appeared lately on the art market and ended in private collections. Although these textiles, dated to the early Tibetan period, follow a popular prototype established in Central Asia in the 6th century, the technical features, colors, and other indigenous elements suggest that they were woven in workshops different from those established between Sogdiana and Gansu. The exhibition "Cultural Exchange Along the Silk Road - Masterpieces of the Tubo Period," organized by the Dunhuang Research Academy and the Pritzker Collaborative Art between July and October 2019 in Dunhuang, Gansu, was a groundbreaking event that gathered scholarly attention on early Tibetan material culture, but a relevant publication is still forthcoming. In my previous work, I briefly discussed a group of silk textiles, possibly from Qinghai or Sichuan, that I analyzed in 2014 in the China National Silk Museum in Hangzhou, Zhejiang. In light of the recent material excavated, published online, or displayed in Dunhuang, in this article, I reevaluate the data previously collected, and discuss in detail the technical and iconographic features of one of the fragments held in Hangzhou. Eventually, the piece was recognized as the ending part of a large panel, which is now in the Abegg Stiftung in Riggisberg, Switzerland.

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • 제1권1호
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF

대마 기반 친환경 의류 제품의 개발 및 활용에 관한 연구 (Development and Utilization of Eco-friendly Products based on Hemp Fabrics)

  • 김수현;김희숙
    • 한국의류산업학회지
    • /
    • 제25권1호
    • /
    • pp.62-71
    • /
    • 2023
  • Recently, interest in natural fabric materials that are not harmful has increased, and hemp is being studied as a new eco-friendly product. This study produced hemp fabric with improved flexibility and increased antibacterial properties by blending it with Hanji yarn. Various weaving methods were proposed to overcome the rough physical properties of hemp, and the functions of the developed products were evaluated through antibacterial tests. The mixing ratios of hemp and Hanji yarns was 50% hemp: 50% Hanji weft, 70% hemp: 30% Hanji weft, 30% hemp: 70% Hanji weft, and 100% hemp. Overall, the higher the ratio of Hanji yarn, the higher the fastness property, and the higher the ratio of hemp yarn, the higher the flexibility of the fabric, which was evaluated to be comfortable to wear. The 99.9% antibacterial properties of hemp products were considered to contribute to maintaining the health of modern people. Owing to its high intensity and high air permeability, it is considered highly usable in the production of children's clothing with a lot of activity. It was evaluated as an advantage that the disadvantage of hemp, which was limited as a material for summer clothing, was broadened to use for all seasons due to the fusion of Hanji. Otherwise, low consumer satisfaction as an outdoor wear is a disadvantage because hemp products had low elasticity and wrinkles.

멜트블로운 부직포의 형태와 물리적 특성을 제어하는 공정기술에 관한 연구 (A study on the process technology for controlling the shape and physical properties of melt-blown non-woven)

  • 정재석;김미경;고정우
    • 한국표면공학회지
    • /
    • 제56권5호
    • /
    • pp.309-319
    • /
    • 2023
  • Non-woven fabric is a textile product made by spinning thermoplastic polymers without manufacturing processes such as stretching, doubling, twisting, weaving, and knitting to form a sheet-shaped web in which fibers are tangled with each other, and then combining them by mechanical and physical methods. In addition, the non-woven fabric manufacturing process has various raw material choices, high productivity, so it is a textile manufacturing technology that can have various uses and increase added value. This study was conducted to control the shape and physical properties of products by improving the manufacturing method of melt-blown non-woven fabrics using process technology that easily changes the shape of non-woven fabrics and improves mechanical properties. In particular, it is considered that a non-woven fabric with a thin material shape and improved mechanical properties will be easily applied to a continuous secondary battery manufacturing industry such as roll to roll operation.

지속가능한 패션산업을 위한 업사이클링 텍스타일디자인 개발과 디지털 3D 활용 연구 (A Study on the Development of Upcycling Textile Design and Digital 3D Utilization for the Sustainable Fashion Industry)

  • 김미경
    • 패션비즈니스
    • /
    • 제27권5호
    • /
    • pp.108-120
    • /
    • 2023
  • Recently, interest in eco-friendliness and sustainability has been increasing due to the rapid progress of fast fashion and the crisis of sudden environmental changes after COVID-19. This study aims to develop upcycling textiles and express product design using digital 3D to realize a sustainable fashion industry and present environmental aspects, diversity, creativity, and new directions in fashion industry design. The research method is to develop and pattern upcycling textile designs by applying weaving techniques with waste materials. It uses the developed upcycling textile design in digital 3D to incorporate it into clothing fashion and shows the utility and practicality of upcycling textile design. As a result of the study, the appearance is realistic when outputting DTP of upcycling textile design. It endures without loosening or tearing, making it a durable and creatively expressive fashion item. Texpro 3D mapping reduces the time and cost of making actual sample fabric. Upcycling textile design and 3D CLO virtual clothing are combined to produce actual clothing samples, resulting in zero waste reduction due to cutting and sewing. This study anticipates actively and continuously advancing the development of upcycling textile design and digital 3D in terms of ethics and the environment.

Text-Driven Multiple-Path Discourse Processing for Descriptive Texts

  • Seo, Jungyun
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.1-8
    • /
    • 1996
  • This paper presents a text-driven discourse analysis system, called DPAS. DPAS constructs a discourse structure by weaving together clauses in the text by finding discourse relations between a clause and the clauses in a context. The basic processing model of DPAS is based on the stack based model of discourse analysis suggested by Grosz and Sidner. We extend the model with dynamic programming method to handle various discourse ambiguities effectively and efficiently. We develop the idea of a context space to keep all information of a context. DPAS parses a text by considering all possible discourse relations between a clause and a context. Since different discourse relations may result in different states of a context, DPAS maintains multiple context spaces for an ambiguous text. Since maintaining all interpretations until the whole text is processed requires too much computing resources, DPAS uses the idea of depth-limited search to limit the search space. If there is more than one discourse relation between an input clause and a context, DPAS constructs context spaces one context space for each discourse relation. Then, DPAS applies heuristics to choose the most desirable context space after it processes some more input clauses. Since the basic idea of DPAS is domain independent, although we used descriptive texts to demonstrate DPAS, we believe the idea of DPAS can be extended to understand other styles of texts.

  • PDF

A Study on the Characteristics of the Manufacturing Method of Handbags by Brand

  • Youshin Park
    • 패션비즈니스
    • /
    • 제27권6호
    • /
    • pp.66-84
    • /
    • 2023
  • Handbags are a part of fashion and while their significance and value are increasing, research on this topic is lacking. This study defines handbags and categorizes the materials used for making handbags, sewing methods, expression techniques, and terminologies related to accessories. A total of 1,743 handbags that were released from the Spring 2020 to Fall 2023, Ready-to-Wear collections by 8 selected brands (Hermes, Dior, Fendi, Chanel, Louis Vuitton, Prada, Gucci, and Alexander McQueen), were analyzed. Out of these, 732 unique designs, excluding those with only color variations, were studied. The most common sewing methods were 'Cut, sewing, and edge painting', 'Cylinder arm sewing', 'Cut, edge painting, and sewing', and 'Inverted seam', in that order. Slim strap designs primarily used the 'Cut, sewing, and edge painting' method, whereas the body, especially with narrow and hard leather, was best suited for the 'Cylinder arm sewing machine'. For expression techniques, the most frequently used methods were 'Quilting', 'Metal Eyelet', 'Embossing', 'Printing', 'Punching', and 'Weaving', respectively. The characteristics of each brand's production methods, expression techniques, and accessories were as follows: First, the exposure of logos and monograms is prominent. Unlike clothing, handbags often prominently feature the brand's logo or monogram. Second, signature quilting is a prominent feature. Quilting effectively conveys the brand's signature style, providing cushioning, volume, and pattern effects. Third, sustainable development is a growing trend. Brands are increasingly applying eco-friendly and socially responsible designs.