• Title/Summary/Keyword: weathered soils

Search Result 283, Processing Time 0.022 seconds

The Efficient Berms for Restraining Excessive Deformation Caused by Deep Excavations in Urban Area (도심지 버팀 굴착시 과도 변헝 억제를 위한 효율적 소단)

  • 양구승;박기태
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.43-56
    • /
    • 1999
  • The use of berms can be an effective method to restrain excessive movements of wall and ground caused by deep excavations in urban area. But generally in construction sites, no berm remains for the sake of construction convenience or the geometry and magnitude of remaining berm is determined by individual experiences due to scarce research results. In this research, laboratory model tests and numerical analyses are used mainly for sandy soils. And efficient berms for restraining excessive movements by deep excavations are analyzed. Model tests were performed for the cases of cantilever and braced wall excavations, and the behaviors of retaining wall were analyzed according to the geometry and magnitude of berms. And also, numerical methods were used for analyzing efficient berms which are available in the soil and construction conditions in urban areas of Korea.

  • PDF

Analysis of Ground Movement During Diaphragm Well Panel Constructions in Sedimentary Marine Deposit (해성점토층에 실시된 지중연속벽 시공에 의한 지반의 변위 분석)

  • Lee Cheol-Ju
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.43-54
    • /
    • 2005
  • The ground movements during three. full-scale trial diaphragm wall (DW) panel constructions were monitored and analysed. The DW panels were constructed in reclaimed fill where sedimentary marine deposit and residual weathered soils are being consolidated. The monitoring data showed exceptionally large lateral ground movements of up to 293 mm near a trench due to the DW panel constructions, which is about 0.8$\%$ D, where D is the maximum excavation depth. It was observed that deliberate holding period of the trench resulted in a significant increase in the lateral ground movements of about 50-225$\%$. A pre-treatment of the marine deposit by installing a single line of jet grout columns around the trench prior to the excavation was found to be a very effective way of reducing the ground movements. The measured ground settlements were compared with some relevant case histories. DW panel constructions in sedimentary marine deposit are likely to cause maximum ground surface settlement up to 0.225$\%$ D.

Time-Dependent Deformation Characteristics of Geosynthetic-Reinforced Soil Using Plane Strain Compression Tests (평면변형압축시험을 이용한 보강토의 시간 의존적 변형 특성 연구)

  • Yoo Chung-Sik;Kim Sun-Bin;Lee Bong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.85-97
    • /
    • 2005
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exist concerns over long-term residual deformation when subjected to repeated and/or cyclic loads, especially when used as part of permanent structures. In view of these concerns, in this paper time-dependent deformation characteristics of geosynthetic reinforced soil under sustained and/or repeated loads were investigated using a series of plane strain compression tests on geogrid reinforced weathered granite soil specimens. The results indicate that sustained or repeated loads can yield appreciable magnitudes of residual deformations, and that the residual deformations are influenced not only by the loading characteristics but by the mechanical properties of geogrid. It is also found that the preloading technique can be effectively used in controlling residual deformations of reinforced soils subjected to sustained and/or repeated loads.

A Study on Analytical Solution of Unsaturated Infinite Slope Stability (불포화 무한사면 안전율의 수정방정식에 대한 연구)

  • Chae, Yu-Mi;Kim, Jae-Hong;Jeong, Young-Hun;Kim, Tae-Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.5-11
    • /
    • 2018
  • In conventional analytical solutions for rainfall-induced soil slope stability, the Green-Ampt (1911) equation for estimating the saturation depth and the Skempton & DeLory (1957) equation for calculating the infinite slope shallow failure were compared with the numerical analysis to confirm the error. In the simple evaluation of the reason of soil slope instability due to rainfall using the conventional equations, there are many errors and, overestimation or underestimation of the calculation results. In this study, the equation consisting of the results obtained from infiltration analysis on unsaturated soil slope is proposed by applying the average range of the strength parameters of the granite weathered soils, and its reliability is verified by comparing with the numerical analysis results. The developed equation can be used easily in various fields for the estimation of slope safety factor by checking the rainfall duration and saturation depth.

Physical and Chemical Properties of Soil in Jang-San Wetland, Busan Metropolitan City (부산시 장산습지 토양의 물리적 및 화학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Ok, Soon-Il
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1363-1374
    • /
    • 2010
  • This study examined the physical and chemical properties of soil in Jang-San wetland in Busan Metropolitan City. The wetland covers wide and flat area comparing to its outside. The samples of the wetland soil were collected and analyzed in order to identify the profiles and chemical properties. According to the analyses of soil moisture and particle size distribution, the wetland soil mostly belongs to sandy loam with the soil moistures of 14.9-153.2%. The soil profiles are configured with O, A, B, and C horizons from the land surface. The organic matter content (2.38-16.7%) at most sampling locations decreases downwardly with the highest at 0-20 cm depth. The organic matter content has a good positive relationship with soil moisture content. According to X-ray diffraction analysis, the wetland soils contain quartz and feldspar (the main components of rhyolite porphyry) as well as montmorillonite, gibbsite, and kaolinite (the weathered products of feldspar). The wetland soil displays the highest iron concentration (average 22,052 mg/kg), indicating oxidation of iron. High concentrations of potassium (average 17,822 mg/kg) and sodium (average 5,394 mg/kg) originate from the weathering of feldspar. Among anions, sulfate concentration is highest with average 9.21 mg/kg that may originate from sulfate minerals and atmosphere.

Analysis of Seepage Velocity in Unsaturated Weathered Soils Using Rainfall Infiltration Test (강우침투실험을 통한 불포화 풍화토 지반의 강우 침투속도 분석)

  • Kim, Hoon;Shin, Ho-Sung;Kim, Yun-Tae;Park, Dug-Keun;Min, Tuk-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Rainfall infiltration test under one dimensional condition is conducted to evaluate the effect of rainfall intensity on seepage velocity and infiltration characteristics for initial unsaturated sediment. Experimental results are compared with those numerical simulations with respect to variations of pore water pressure, degree of saturation and discharge velocity with time, and both results give good agreement. High rainfall intensity tends to increase seepage velocity almost linearly. But it shows rapid increase as rainfall intensity approaches saturated hydraulic conductivity of the sediment. In addition, the upper part of wetting front depth is partially saturated, not fully. Therefore, actual wetting front depth is considered to advance faster than theoretical prediction, which leads to slope instability of unsaturated slope due to surface rainfall.

Effect of Rainfall-Patterns on Slope Stability in Unsaturated Weathered Soils (강우사상의 영향을 고려한 불포화 풍화사면의 안정성)

  • Kim, Byeong-Su;Park, Seong-Wann
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1027-1035
    • /
    • 2013
  • In this study, two rainfall patterns are utilized for practical consideration of rainfall phenomena in unsaturated soil slope design. One is the I.D.F (Intensity-Duration-Frequency) method which is an existing design rainfall method and ignores the effect of the variation of the rainfall according to the time. The other is the Huff method which considers this effect oppositely. First, the safety of factor of the slope according to the variation of an initial suction which means the precedent rainfall effect was examined by means of the application of the I.D.F method. Through the application of two rainfall patterns, it was discussed how the rainfall pattern affects the factor of safety of the slope. As a result, it is found that the Huff method is more practical on the evaluation of the slope stability than the I.D.F method.

A Study on the Effect of Soil Wineral and Component of the Pore Fluid to the Electrical Resistivity (흙의 구성광물과 간극수의 성분이 비저항값에 미치는 영향에 관한 연구)

  • Yoon, Chun-Kyeong;Yu, Chan;Yoon, Kil-Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • The environmental problem of the rural area has been accelerated in soil as well as water. Soil contamination is usually caused by improper operation of landfills, abandoned mine fields, accidental spills, and illegal dumpings. Once soil contamination is initiated, pollutants migrate and may cause groundwater contamination which takes much effort for remediation. Early detection, therefore, is important to prevent further contamination. Electrical resistivity method was used to detect soil contamination, but it was not effective to the heterogeneous condition. Static cone penetrometer test (CPT) has been used widely to investigate geotechnical properties of the underground. In this study, electrical resistivity method and CPT are combined to improve the applicability of it. The pilot test was performed to examine the variation of electrical resistivity with different soil minerals and pore fluid characteristics. Soil samples used were poorly graded sand, silty sandy soil, and weathered granite soil. For all the cases, electrical resistivity decreased with increasing of moisture content. Soil mineral also affected the electrical resistivity significantly. Above all, leachate addition in the pore fluid was very sensitive and caused decreasing of electrical resistivity markedly. It implies that electrical resistivity method can be applied to investigate pollutant plume effectively. This is specially sure when the sensors contact the contaminated soils directly. The CPT method involves cone penetration to the ground, therefore, underground contamination around the cone could be investigated effectively even for heterogeneous condition as it penetrates if electrical resistivity sensors are attached on the cone.

  • PDF

Prediction of Rainfall-Induced Slope Failure Using Hotelling's T-Square Statistic (Hotelling의 T-square 통계량을 이용한 강우유발 사면붕괴 예측)

  • Kim, Seul-Bi;Na, Jong-Hwa;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.331-337
    • /
    • 2015
  • A new technique is presented to detect unstable slope behavior, based on Hotelling's T2 analysis of pore pressure and water content obtained during flume tests using granitic and gneissic weathered soils. Three sets of pore pressure-water content values were simultaneously obtained during each test, and T2 statistics at the 90.0% and 95.0% confidence levels were calculated based on the correlations between values. The results show that unsuccessful detection of some local failures of the flume slope depended on the sensor position. In the case of global slope failures, anomalous behavior was detected between several hundred and several thousand seconds before the event as T2 statistics exceeded the confidence interval 90%. Hotelling's T2 analysis provides a single control criterion because it enables correlations between diverse measured values within the same slope; the criterion also includes stepwise criteria for a forecasting and warning system based on confidence levels.

The Preliminary Study for Genetic Environment of the Gem fields in the Pailling Area, Cambodia (캄보디아 빠일링지역의 보석광상의 성인에 대한 예비연구)

  • 김인준
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.269-274
    • /
    • 2003
  • This study, one of the projects for investigation of the precious metal deposits of the Circum-Pacific Ocean coon-tries, was performed in a gem field of Pailling, Cambodia, in which there are numbers of undeveloped mineral resources. The gem fields in the Pailling area are typically distributed in the laterite, lying on of weathered basalts. The gem grade of corundum is low in the surface soil horizon(less than 1 m in depth), but is higher in the subsurface. Occurrence and genetic environment of the precious stone are not concerned in the soils. A Precious stone that is already made from at the least upper part of volcanic rocks is produced in large quantities to undergoing to weathering of the rocks. A precious stone is made from upper part of the formation under the high temperature when volcano is vomiting or after vomiting. and/or made from between the formation under the high temperature when other volcano is vomiting. Volcanic rocks including precious stone are a little different from other volcanic rocks when volcano is vomiting, but chemical composition of rocks is not far different from other volcanic rocks.