• Title/Summary/Keyword: weather satellite

Search Result 477, Processing Time 0.031 seconds

Calibration and Validation System for Synthetic Aperture Radar Satellite (영상레이더 위성을 위한 검보정 시스템)

  • Shin, Jae-Min;Jeong, Ho-Ryung;Lee, Kwang-Jae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.98-104
    • /
    • 2010
  • The demand for Satellite Images is continuously increasing owing to the various applications of optical satellite images. However, the acquisition of optical images has a limitation due to problems of weather and day & night. because an optical satellite makes images with reflections of sunlight. Therefore, SAR Satellite, which uses electromagnetic waves to make an image, gives increased demand to various applications. It also makes increased interest. In this paper, a calibration and validation system, which is an essential element for high quality Radar images, is studied.

  • PDF

INTRODUCTION OF COMS SYSTEM

  • Baek, Myung-Jin;Han, Cho-Young
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.56-59
    • /
    • 2006
  • In this paper, Korea's first geostationary Communication, Ocean and Meteorological Satellte(COMS) program is introduced. COMS program is one of the Korea National Space Programs to develop and operate a pure civilian satellite of practical-use for the compound missions of meteorological observation and ocean monitoring, and space test of experimentally developed communication payload on the geostationary orbit. The target launch of COMS is scheduled at the end of 2008. COMS program is international cooperation program between KARI and ASTRIUM SAS and funded by Korean Government. COMS satellite is a hybrid satellite in the geostationary orbit, which accommodates multiple payloads of MI(Meteorological Imager), GOCI(Geostationary Ocean Color Imager), and the Ka band Satellite Communication Payload into a single spacecraft platform. The MI mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The GOCI mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service mandatory.

  • PDF

Designing of Conceptual Models on Typhoon and Changma Utilizing GK-2A Satellite Data (GK-2A 위성자료 활용을 위한 태풍 및 장마 개념모형의 도안)

  • Moon, Suyeon;Ha, Kyung-Ja;Moon, Mincheol;Jhun, Jong-Ghap;Moon, Ja-Yeon
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.215-226
    • /
    • 2016
  • Conceptual models to analyze both typhoon and Changma using products extracted by the GEO-KOMPSAT-2A (GK-2A) are suggested in this study. The GK-2A which is scheduled to be launched in 2018 has a high resolution, 16 channels, and 52 products. This means GK-2A is expected to obtain high quality images and products, which can detect severe weather earlier than the Communications, Ocean and Meteorological Satellite (COMS). Since there are not enough conceptual models for typhoon and Changma using satellite images and products, our conceptual model can increase both the applicability of satellite data and the accuracy of analysis. In the conceptual model, typhoons are classified as three types by prevailing factors; 1) heavy-rainfall type, 2) wind type, and 3) complex type. For Changma, two types are divided by the characteristics; band type and heavy-rainfall type. Among the high resolution 52 products, each type of typhoon and Changma are selected. In addition, the numerical products and dynamic factors are considered in order to improve conceptual models.

Ka band Communication Payload System Technology of COMS (천리안 위성 Ka 대역 통신탑재체시스템 기술)

  • Lee, Seong-Pal;Jo, Jin-Ho;You, Moon-Hee;Choi, Jang-Sup;Ahn, Ki-Burm
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.75-81
    • /
    • 2010
  • COMS (Communication, Ocean and Meteorological Satellite) is the multi-purposed Korean geostationary satellite funded by four Korean government ministries, and is to supply communication services, ocean and weather observation for 7 years. As part of COMS, development of Ka band communication payload composed of microwave switching transponder and multi-horn antenna is sponsored by KCC (Korea Communications Commission) and developed by ETRI (Electronics and Telecommunications Research Institute). The purpose of Ka Payload development is to acquire space proven technology of Ka payload and to exploit advanced multimedia communication services. This paper aims to study development technology of Ka payload system through whole process of ETRI project. Also application of Ka payload will be dealt in this paper.

The Optimum Design of Optical Heterodyne Receiver used on Optical Sate Ilite Communication under Turbulent Atmosphere (교란 대기하에서 광위성통신용 광헤테로다인 수신기 최적 설계에 관한 연구)

  • 한종석;정진호;김영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.4
    • /
    • pp.28-39
    • /
    • 1993
  • In the international BISDN used satellite, the laser that has large BW has to be used as a carrier for transmitting a lot of visual, vocal, and data information. Interoptical satellite communication has now developed in theoretical and practical aspects. But the optical communication, between satellite and earth station, is hindered by atmospheric absorption, scattering, and turbulence. In this paper, it was supposed that 1Gbps information was transmitted by binary FSK and 50mW AlGaAs semiconductor laser was used as a optical source in the satellite communication link between geosynchronous orbit satellite and earth station. We analyzed the BER and the entire diameter of the noncoherently combined optical heterodyne receiver as el evation angle, and determined the number of the optical heterodyne rece ivers, which is necessary for the BER of the receiver to be less than 10$^{-9}$ by computer simulation under the clear weather condition. It is shown that the BER and the number of the optical heterodyne receivers decrease as the elevation angle increases. In the region used the same number of the optical heterodyne receivers, it is shown that the entire diameter of the receiver increases but the BER decreases as the elevation angle increases.

  • PDF

Improving Satellite Derived Soil Moisture Data Using Data Assimilation Methods (자료동화 기법을 이용한 위성영상 추출 토양수분 자료 개선)

  • Hwang, Soonho;Ryu, Jeong Hoon;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.152-152
    • /
    • 2018
  • Soil moisture is a important factor in hydrologic analysis. So, if we have spatially distributed soil moisture data, it can help to study much research in a various field. Recently, there are a lot of satellite derived soil moisture data, and it can be served through web freely. Especially, NASA (National Aeronautics and Space Administration) launched the Soil Moisture Aperture Passive (SMAP) satellite for mapping global soil moisture on 31 January 2015. SMAP data have many advantages for study, for example, SMAP data has higher spatial resolution than other satellited derived data. However, becuase many satellited derived soil moisture data have a limitation to data accuracy, if we have ancillary materials for improving data accuracy, it can be used. So, in this study, after applying the alogorithm, which is data assimilation methods, applicability of satellite derived soil moisture data was analyzed. Among the various data assimilation methods, in this study, Model Output Statistics (MOS) technique was used for improving satellite derived soil moisture data. Model Output Statistics (MOS) is a type of statistical post-processing, a class of techniques used to improve numerical weather models' ability to forecast by relating model outputs to observational or additional model data.

  • PDF

An Improved Estimation of Outgoing Longwave Radiation Based on Geostationary Satellite

  • Kim, Hyunji;Seo, Minji;Seong, Noh-hun;Lee, Kyeong-sang;Choi, Sungwon;Jin, Donghyun;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.195-201
    • /
    • 2019
  • The Outgoing Longwave Radiation (OLR) is an important satellite-driven variable for understanding the Earth's energy budget balance. The geostationary OLR retrievals require angular and spectral integration using an empirical equation for irradiance flux-to-OLR from a regression analysis, which determines the accuracy of the narrowband satellite-based OLR. We selected homogeneous pixels which is satisfied less temporal-spatial variability of cloud, on three infrared channels (6.7, 10.8, $12.0{\mu}m$) of the first multipurpose geostationary satellite in Korea, namely the Communication, Ocean and Meteorological Satellite/Meteorological Imager (COMS/MI). Multiple regression analysis was performed to retrieve OLR with improved accuracy using selected parameters based on theoretical and physical significance. This algorithm yielded retrieval with higher accuracy than broadband-based OLR retrieval: RMSE of 10.54 to $3.81W\;m^{-2}$, and bias of -8.49 to $-0.07W\;m^{-2}$.

Application of machine learning for merging multiple satellite precipitation products

  • Van, Giang Nguyen;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.134-134
    • /
    • 2021
  • Precipitation is a crucial component of water cycle and play a key role in hydrological processes. Traditionally, gauge-based precipitation is the main method to achieve high accuracy of rainfall estimation, but its distribution is sparsely in mountainous areas. Recently, satellite-based precipitation products (SPPs) provide grid-based precipitation with spatio-temporal variability, but SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution quite coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation using Automatic weather system (AWS) in Korea and multiple SPPs(i.e. CHIRPSv2, CMORPH, GSMaP, TRMMv7) during the period of 2003-2017. And this study used a machine learning based Random Forest (RF) model for generating new merging precipitation. In addition, several statistical linear merging methods are used to compare with the results of the RF model. In order to investigate the efficiency of RF, observed data from 64 observed Automated Synoptic Observation System (ASOS) were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the random forest model showed higher accuracy than each satellite rainfall product and spatio-temporal variability was better reflected than other statistical merging methods. Therefore, a random forest-based ensemble satellite precipitation product can be efficiently used for hydrological simulations in ungauged basins such as the Mekong River.

  • PDF

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

An Assessment of Offshore Wind Energy Resources around Korean Peninsula (한반도해역의 해상 풍력 자원 평가)

  • Kyong, N.H.;Yoon, J.E.;Jang, M.S.;Jang, D.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.35-41
    • /
    • 2003
  • In order to investigate the offshore wind resources around Korean peninsula, the "QuikSCAT Level 3" data by ADEOS II satellite was analyzed from Jan 1 2000 to Jan 18 2003. The "SeaWinds" on the satellite is a specialize4 device for microwave scatterometery that measures near-surface wind speed and direction under all weather and cloud conditions. Wind speed are extrapolated from 10m to 60m with the exponent of 1/10 in the power law model. It has been found that the High wind energy potentials are prevailing in the South sea and Southeastern end of Korean peninsula.