• 제목/요약/키워드: weather parameters

검색결과 382건 처리시간 0.021초

Space Weather Monitoring System for Geostationary Satellites and Polar Routes

  • Baek, Ji-Hye;Lee, Jae-Jin;Choi, Seong-Hwan;Hwang, Jung-A;Hwang, Eun-Mi;Park, Young-Deuk
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.101.2-101.2
    • /
    • 2011
  • We have developed solar and space weather monitoring system for space weather users since 2007 as a project named 'Construction of Korea Space Weather Prediction Center'. In this presentation we will introduce space weather monitoring system for Geostationary Satellites and Polar Routes. These were developed for satisfying demands of space weather user groups. 'Space Weather Monitoring System for Geostationary Satellites' displays integrated space weather information on geostationary orbit such as magnetopause location, nowcast and forecast of space weather, cosmic ray count rate, number of meteors and x-ray solar flux. This system is developed for space weather customers who are managing satellite systems or using satellite information. In addition, this system provides space weather warning by SMS in which short message is delivered to users' cell phones when space weather parameters reach a critical value. 'Space Weather Monitoring System for Polar Routes' was developed for the commercial airline companies operating polar routes. This provides D-region and polar cap absorption map, aurora and radiation particle distribution, nowcast and forecast of space weather, proton flux, Kp index and so on.

  • PDF

서울시 건물형태에 따른 거칠기길이 분포특성 연구 (A Study on the Roughness Length Spatial Distribution in Relation to the Seoul Building Morphology)

  • 이채연;권태헌;박문수;최영진;안승만
    • 대기
    • /
    • 제25권2호
    • /
    • pp.339-351
    • /
    • 2015
  • The purpose of this study is for the fundamental understandings about building morphological parameters and aerodynamic roughness parameters of Seoul, Korea using the detailed urban geographic information datasets. Applied roughness parameter calculations are based on a digital map of buildings with lot area polygons. The quality of the developed roughness length ($z_0$) of Seoul was evaluated with densely installed 107 automatic weather stations. The correlation coefficient results between averaged wind speeds of AWS data and averaged $z_0$ is -0.303 in night and -0.398 in day (200 m radii circles case). Further $z_0$ enhancement should follow by considering other surface features such as high tree and orography of Seoul. However, this study would meet the needs to for local- or meso-scale meteorological modeling applications of Seoul. However, further studies would require for enhancing the $z_0$ applications of Seoul.

EVALUATION OF AN ENHANCED WEATHER GENERATION TOOL FOR SAN ANTONIO CLIMATE STATION IN TEXAS

  • Lee, Ju-Young
    • Water Engineering Research
    • /
    • 제5권1호
    • /
    • pp.47-54
    • /
    • 2004
  • Several computer programs have been developed to make stochastically generated weather data from observed daily data. But they require fully dataset to run WGEN. Mostly, meterological data frequently have sporadic missing data as well as totally missing data. The modified WGEN has data filling algorithm for incomplete meterological datasets. Any other WGEN models have not the function of data filling. Modified WGEN with data filling algorithm is processing from the equation of Matalas for first order autoregressive process on a multi dimensional state with known cross and auto correlations among state variables. The parameters of the equation of Matalas are derived from existing dataset and derived parameters are adopted to fill data. In case of WGEN (Richardson and Wright, 1984), it is one of most widely used weather generators. But it has to be modified and added. It uses an exponential distribution to generate precipitation amounts. An exponential distribution is easier to describe the distribution of precipitation amounts. But precipitation data with using exponential distribution has not been expressed well. In this paper, generated precipitation data from WGEN and Modified WGEN were compared with corresponding measured data as statistic parameters. The modified WGEN adopted a formula of CLIGEN for WEPP (Water Erosion Prediction Project) in USDA in 1985. In this paper, the result of other parameters except precipitation is not introduced. It will be introduced through study of verification and review soon

  • PDF

Forecasting of Various Air Pollutant Parameters in Bangalore Using Naïve Bayesian

  • Shivkumar M;Sudhindra K R;Pranesha T S;Chate D M;Beig G
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.196-200
    • /
    • 2024
  • Weather forecasting is considered to be of utmost important among various important sectors such as flood management and hydro-electricity generation. Although there are various numerical methods for weather forecasting but majority of them are reported to be Mechanistic computationally demanding due to their complexities. Therefore, it is necessary to develop and build models for accurately predicting the weather conditions which are faster as well as efficient in comparison to the prevalent meteorological models. The study has been undertaken to forecast various atmospheric parameters in the city of Bangalore using Naïve Bayes algorithms. The individual parameters analyzed in the study consisted of wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation (SR), black carbon (BC), radiative forcing (RF), air temperature (AT), bar pressure (BP), PM10 and PM2.5 of the Bangalore city collected from Air Quality Monitoring Station for a period of 5 years from January 2015 to May 2019. The study concluded that Naive Bayes is an easy and efficient classifier that is centered on Bayes theorem, is quite efficient in forecasting the various air pollution parameters of the city of Bangalore.

부산지역에 적합한 시간당 수평면 전일사량 산출모델의 비교분석 (Comparison Analysis of Estimation Models of Hourly Horizontal Global Solar Radiation for Busan, Korea)

  • 김기한;오기환
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.9-17
    • /
    • 2013
  • Hourly horizontal global solar radiation has been used as one of significant parameters in a weather file for building energy simulations, which determines the quality of building thermal performance. However, as about twenty two weather stations in Korea have actually measured the horizontal global sola radiation, the weather files collected in other stations requires solar data simulation from the other meteorological parameters. Thus, finding the reliable complicated method that can be used in various weather conditions in Korea is critically important. In this paper, three solar simulation models were selected and evaluated through the reliability test with the simulated hourly horizontal global solar radiation against the actually measured solar data to find the most suitable model for the south east area of Korea. Three selected simulation models were CRM, ZHM, and MRM. The first two models are regression type models using site-fitted coefficients which are derived from the correlation between measured solar data and local meteorological parameters from the previous years, and the last model is a mechanistic type model using the meteorological data to calculate conditions of atmospheric constituents that cause absorption and scattering of the extraterrestrial radiation on the way to the surface on the Earth. The evaluation results show that ZHM is the most reliable model in this area, yet a complicated hybrid simulation methods applying the advantages of each simulation method with the monthly-based weather data is needed.

기상 예보 데이터와 일사 예측 모델식을 활용한 실시간 에너지 수요예측 (Real-time Energy Demand Prediction Method Using Weather Forecasting Data and Solar Model)

  • 곽영훈;천세환;장철용;허정호
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.310-316
    • /
    • 2013
  • This study was designed to investigate a method for short-term, real-time energy demand prediction, to cope with changing loads for the effective operation and management of buildings. Through a case study, a novel methodology for real-time energy demand prediction with the use of weather forecasting data was suggested. To perform the input and output operations of weather data, and to calculate solar radiation and EnergyPlus, the BCVTB (Building Control Virtual Test Bed) was designed. Through the BCVTB, energy demand prediction for the next 24 hours was carried out, based on 4 real-time weather data and 2 solar radiation calculations. The weather parameters used in a model equation to calculate solar radiation were sourced from the weather data of the KMA (Korea Meteorological Administration). Depending on the local weather forecast data, the results showed their corresponding predicted values. Thus, this methodology was successfully applicable to anywhere that local weather forecast data is available.

Determination of the Parameter Sets for the Best Performance of IPS-driven ENLIL Model

  • Yun, Jongyeon;Choi, Kyu-Cheol;Yi, Jonghyuk;Kim, Jaehun;Odstrcil, Dusan
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.265-271
    • /
    • 2016
  • Interplanetary scintillation-driven (IPS-driven) ENLIL model was jointly developed by University of California, San Diego (UCSD) and National Aeronaucics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The model has been in operation by Korean Space Weather Cetner (KSWC) since 2014. IPS-driven ENLIL model has a variety of ambient solar wind parameters and the results of the model depend on the combination of these parameters. We have conducted researches to determine the best combination of parameters to improve the performance of the IPS-driven ENLIL model. The model results with input of 1,440 combinations of parameters are compared with the Advanced Composition Explorer (ACE) observation data. In this way, the top 10 parameter sets showing best performance were determined. Finally, the characteristics of the parameter sets were analyzed and application of the results to IPS-driven ENLIL model was discussed.

How to forecast solar flares, solar proton events, and geomagnetic storms

  • Moon, Yong Jae
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.33-33
    • /
    • 2013
  • We are developing empirical space weather (solar flare, solar proton event, and geomagnetic storm) forecast models based on solar data. In this talk we will review our main results and recent progress. First, we have examined solar flare (R) occurrence probability depending on sunspot McIntosh classification, its area, and its area change. We find that sunspot area and its increase (a proxy of flux emergence) greatly enhance solar flare occurrence rates for several sunspot classes. Second, a solar proton event (S) forecast model depending on flare parameters (flare strength, duration, and longitude) as well as CME parameters (speed and angular width) has been developed. We find that solar proton event probability strongly depends on these parameters and CME speed is well correlated with solar proton flux for disk events. Third, we have developed an empirical storm (G) forecast model to predict probability and strength of a storm using halo CME - Dst storm data. For this we use storm probability maps depending on CME parameters such as speed, location, and earthward direction. We are also looking for geoeffective CME parameters such as cone model parameters and magnetic field orientation. We find that all superstorms (less than -200 nT) occurred in the western hemisphere with southward field orientations. We have a plan to set up a storm forecast method with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the WSA-ENLIL model. Finally, we discuss several ongoing works for space weather applications.

  • PDF

Development of Leaf Spot (Myrothecium roridum) and Dispersal of Inoculum in Mulberry (Morus spp.)

  • Kumar, P.M.Pratheesh;Pal, S.C.;Qadri, S.M.H.;Gangwar, S.K.;Saratchandra, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제6권2호
    • /
    • pp.163-169
    • /
    • 2003
  • Studies were conducted on the effect of pruning time, host age, conidial dispersal and weather parameters on the incidence and severity of mulberry leaf spot (Myrothecium roridum). The disease severity (%) increased with increase in shoot age irrespective of pruning date. Maximum disease severity was observed in plants pruned during first week of April and minimum disease severity in plants pruned during first week of March. Significant (P < 0.01) influence of date of pruning, shoot age and their interaction was observed on severity of the disease. Apparent infection rate (r) was significantly higher during the plant growth period from day 48 to day 55. Average apparent yale was higher in plants pruned during first week of April and least in plants pruned during first week of July. The disease infection was negatively correlated to distance from the inoculum source. Leaf spot severity (%) was influenced by weather parameters. Multiple regression analysis revealed contribution of various combinations of weather parameters on the disease severity. Linear prediction model $(Y = -81.803+1.176x_2+0.765x_3) with significant $R^2$ was developed for prediction of the disease under natural epiphytotic condition.

DYNAMIC AUTOCORRELATION TEMPERATURE MODELS FOR PRICING THE WEATHER DERIVATIVES IN KOREA

  • Choi, H.W;Chung, S.K
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.771-785
    • /
    • 2002
  • Many industries like energy, utilities, ice cream and leisure sports are closely related to the weather. In order to hedge weather related risks, they invest their assets with portfolios like option, coupons, future, and other weather derivatives. Among weather related derivatives, CDD and HDD index options are mainly transacted between companies. In this paper, the autocorrelation system of temperature will be checked for several cities in Korea and the parameter estimation will be carried based on the maximum likelihood estimation. Since the log likelihood increase as the number of parameters increases, we adopt the Schwarz information criterion .