• Title/Summary/Keyword: weather forecast

Search Result 609, Processing Time 0.024 seconds

Analysis of Changes in Extreme Weather Events Using Extreme Indices

  • Kim, Byung-Sik;Yoon, Young-Han;Lee, Hyun-Dong
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.175-183
    • /
    • 2011
  • The climate of the $21^{st}$ century is likely to be significantly different from that of the 20th century because of human-induced climate change. An extreme weather event is defined as a climate phenomenon that has not been observed for the past 30 years and that may have occurred by climate change and climate variability. The abnormal climate change can induce natural disasters such as floods, droughts, typhoons, heavy snow, etc. How will the frequency and intensity of extreme weather events be affected by the global warming change in the $21^{st}$ century? This could be a quite interesting matter of concern to the hydrologists who will forecast the extreme weather events for preventing future natural disasters. In this study, we establish the extreme indices and analyze the trend of extreme weather events using extreme indices estimated from the observed data of 66 stations controlled by the Korea Meteorological Administration (KMA) in Korea. These analyses showed that spatially coherent and statistically significant changes in the extreme events of temperature and rainfall have occurred. Under the global climate change, Korea, unlike in the past, is now being affected by extreme weather events such as heavy rain and abnormal temperatures in addition to changes in climate phenomena.

Recent International Activity of KASI for Space Weather Research

  • Cho, Kyung-Suk;Park, Young-Deuk;Lee, Jae-Jin;Bong, Su-Chan;Kim, Yeon-Han;Hwang, Jung-A;Choi, Seong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2010
  • KASI's Solar and Space Weather Research Group (SSWRG) is actively involved in solar and space weather research. Since its inception, the SSWRG has been utilizing ground-based assets for its research, such as the Solar Flare Telescope, Solar Imaging Spectrograph, and Sunspot Telescope. In 2007 SSWRG initiated the Korean Space Weather Prediction Center (KSWPC). The goal of KSWPC is to extend the current ground observation capabilities, construct space weather database and networking, develop prediction models, and expand space weather research. Beginning in 2010, SSWRG plans to expand its research activities by collaborating with new international partners, continuing the development of space weather prediction models and forecast system, and phasing into developing and launching space-based assets. In this talk, we will report on KASI's recent activities of international collaborations with NASA for STEREO (Solar Terrestrial Relations Observatory), SDO (Solar Dynamic Observatory), and Radiation Belt Storm Probe (RBSP).

  • PDF

Development of the Three-Dimensional Variational Data Assimilation System for the Republic of Korea Air Force Operational Numerical Weather Prediction System (공군 현업 수치예보를 위한 삼차원 변분 자료동화 체계 개발 연구)

  • Noh, Kyoungjo;Kim, Hyun Mee;Kim, Dae-Hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • In this study, a three-dimensional variational(3DVAR) data assimilation system was developed for the operational numerical weather prediction(NWP) system at the Republic of Korea Air Force Weather Group. The Air Force NWP system utilizes the Weather Research and Forecasting(WRF) meso-scale regional model to provide weather information for the military service. Thus, the data assimilation system was developed based on the WRF model. Experiments were conducted to identify the nested model domain to assimilate observations and the period appropriate in estimating the background error covariance(BEC) in 3DVAR. The assimilation of observations in domain 2 is beneficial to improve 24-h forecasts in domain 3. The 24-h forecast performance does not change much depending on the estimation period of the BEC in 3DVAR. The results of this study provide a basis to establish the operational data assimilation system for the Republic of Korea Air Force Weather Group.

Long-Term Maximum Power Demand Forecasting in Consideration of Dry Bulb Temperature (건구온파를 오인한 장기최대전력수요예측에 관한 연구)

  • 고희석;정재길
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.10
    • /
    • pp.389-398
    • /
    • 1985
  • Recently maximum power demand of our country has become to be under the great in fluence of electric cooling and air conditioning demand which are sensitive to weather conditions. This paper presents the technique and algorithm to forecast the long-term maximum power demand considering the characteristics of electric power and weather variable. By introducing a weather load model for forecasting long-term maximum power demand with the recent statistic data of power demand, annual maximum power demand is separated into two parts such as the base load component, affected little by weather, and the weather sensitive load component by means of multi-regression analysis method. And we derive the growth trend regression equations of above two components and their individual coefficients, the maximum power demand of each forecasting year can be forecasted with the sum of above two components. In this case we use the coincident dry bulb temperature as the weather variable at the occurence of one-day maximum power demand. As the growth trend regression equation we choose an exponential trend curve for the base load component, and real quadratic curve for the weather sensitive load component. The validity of the forecasting technique and algorithm proposed in this paper is proved by the case study for the present Korean power system.

  • PDF

Development of Weather Forecast Models for a Short-term Building Load Prediction (건물의 단기부하 예측을 위한 기상예측 모델 개발)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.

Internet-based Information System for Agricultural Weather and Disease and Insect fast management for rice growers in Gyeonggi-do, Korea

  • S.D. Hong;W.S. Kang;S.I. Cho;Kim, J.Y.;Park, K.Y;Y.K. Han;Park, E.W.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.108.2-109
    • /
    • 2003
  • The Gyeonggi-do Agricultural Research and Extension Services has developed a web-site (www.epilove.com) in collaboration with EPINET to provide information on agricultural weather and rice disease and insect pest management in Gyeonggi-do. Weather information includes near real-time weather data monitored by automated weather stations (AWS) installed at rice paddy fields of 11 Agricultural Technology Centers (ATC) in Gyeonggi-do, and weekly weather forecast by Korea Meteorological Administration (KMA). Map images of hourly air temperature and rainfall are also generated at 309m x 309m resolution using hourly data obtained from AWS installed at 191 locations by KMA. Based on near real-time weather data from 11 ATC, hourly infection risks of rice blast, sheath blight, and bacterial grain rot for individual districts are estimated by disease forecasting models, BLAST, SHBLIGHT, and GRAINROT. Users can diagnose various diseases and insects of rice and find their information in detail by browsing thumbnail images of them. A database on agrochemicals is linked to the system for disease and insect diagnosis to help users search for appropriate agrochemicals to control diseases and insect pests.

  • PDF

Wind Prediction with a Short-range Multi-Model Ensemble System (단시간 다중모델 앙상블 바람 예측)

  • Yoon, Ji Won;Lee, Yong Hee;Lee, Hee Choon;Ha, Jong-Chul;Lee, Hee Sang;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.327-337
    • /
    • 2007
  • In this study, we examined the new ensemble training approach to reduce the systematic error and improve prediction skill of wind by using the Short-range Ensemble prediction system (SENSE), which is the mesoscale multi-model ensemble prediction system. The SENSE has 16 ensemble members based on the MM5, WRF ARW, and WRF NMM. We evaluated the skill of surface wind prediction compared with AWS (Automatic Weather Station) observation during the summer season (June - August, 2006). At first stage, the correction of initial state for each member was performed with respect to the observed values, and the corrected members get the training stage to find out an adaptive weight function, which is formulated by Root Mean Square Vector Error (RMSVE). It was found that the optimal training period was 1-day through the experiments of sensitivity to the training interval. We obtained the weighted ensemble average which reveals smaller errors of the spatial and temporal pattern of wind speed than those of the simple ensemble average.

Forecasting daily PM10 concentrations in Seoul using various data mining techniques

  • Choi, Ji-Eun;Lee, Hyesun;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.199-215
    • /
    • 2018
  • Interest in $PM_{10}$ concentrations have increased greatly in Korea due to recent increases in air pollution levels. Therefore, we consider a forecasting model for next day $PM_{10}$ concentration based on the principal elements of air pollution, weather information and Beijing $PM_{2.5}$. If we can forecast the next day $PM_{10}$ concentration level accurately, we believe that this forecasting can be useful for policy makers and public. This paper is intended to help forecast a daily mean $PM_{10}$, a daily max $PM_{10}$ and four stages of $PM_{10}$ provided by the Ministry of Environment using various data mining techniques. We use seven models to forecast the daily $PM_{10}$, which include five regression models (linear regression, Randomforest, gradient boosting, support vector machine, neural network), and two time series models (ARIMA, ARFIMA). As a result, the linear regression model performs the best in the $PM_{10}$ concentration forecast and the linear regression and Randomforest model performs the best in the $PM_{10}$ class forecast. The results also indicate that the $PM_{10}$ in Seoul is influenced by Beijing $PM_{2.5}$ and air pollution from power stations in the west coast.

Application of Weakly Coupled Data Assimilation in Global NWP System (전지구 예보모델의 대기-해양 약한 결합자료동화 활용성에 대한 연구)

  • Yoon, Hyeon-Jin;Park, Hyei-Sun;Kim, Beom-Soo;Park, Jeong-Hyun;Lim, Jeong-Ock;Boo, Kyung-On;Kang, Hyun-Suk
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.219-226
    • /
    • 2019
  • Generally, the weather forecast system has been run using prescribed ocean condition. As it is widely known that coupling between atmosphere and ocean process produces consistent initial condition at all-time scales to improve forecast skill, there are many trials on the application of data assimilation of coupled model. In this study, we implemented a weakly coupled data assimilation (short for WCDA) system in global NWP model with low horizontal resolution for coupled forecast with uncoupled initialization, following WCDA system at the Met Office. The experiment is carried out for a typhoon evolution forecast in 2017. Air-sea exchange process provides SST cooling and gives a substantial impact on tendency of central pressure changes in the decaying phase of the typhoon, except the underestimated central pressure. Coupled data assimilation is a challenging new area, requiring further work, but it would offer the potential for improving air-sea feedback process on NWP timescales and finally contributing forecast accuracy.

Adjoint-Based Observation Impact of Advanced Microwave Sounding Unit-A (AMSU-A) on the Short-Range Forecast in East Asia (수반 모델에 기반한 관측영향 진단법을 이용하여 동아시아 지역의 단기예보에 AMSU-A 자료 동화가 미치는 영향 분석)

  • Kim, Sung-Min;Kim, Hyun Mee
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.93-104
    • /
    • 2017
  • The effect of Advanced Microwave Sounding Unit-A (AMSU-A) observations on the short-range forecast in East Asia (EA) was investigated for the Northern Hemispheric (NH) summer and winter months, using the Forecast Sensitivity to Observations (FSO) method. For both periods, the contribution of radiosonde (TEMP) to the EA forecast was largest, followed by AIRCRAFT, AMSU-A, Infrared Atmospheric Sounding Interferometer (IASI), and the atmospheric motion vector of Communication, Ocean and Meteorological Satellite (COMS) or Multi-functional Transport Satellite (MTSAT). The contribution of AMSU-A sensor was largely originated from the NOAA 19, NOAA 18, and MetOp-A (NOAA 19 and 18) satellites in the NH summer (winter). The contribution of AMSU-A sensor on the MetOp-A (NOAA 18 and 19) satellites was large at 00 and 12 UTC (06 and 18 UTC) analysis times, which was associated with the scanning track of four satellites. The MetOp-A provided the radiance data over the Korea Peninsula in the morning (08:00~11:30 LST), which was important to the morning forecast. In the NH summer, the channel 5 observations on MetOp-A, NOAA 18, 19 along the seaside (along the ridge of the subtropical high) increased (decreased) the forecast error slightly (largely). In the NH winter, the channel 8 observations on NOAA 18 (NOAA 15 and MetOp-A) over the Eastern China (Tibetan Plateau) decreased (increased) the forecast error. The FSO provides useful information on the effect of each AMSU-A sensor on the EA forecasts, which leads guidance to better use of AMSU-A observations for EA regional numerical weather prediction.