• 제목/요약/키워드: weather and climate research institutions

검색결과 5건 처리시간 0.02초

기상/기후 연구 및 예보 기관의 슈퍼컴퓨터 보유 역사와 현황 (The History and Current Status of the Supercomputers in Institutions for Research and Forecast of Weather/Climate)

  • 조민수
    • 대기
    • /
    • 제16권2호
    • /
    • pp.141-157
    • /
    • 2006
  • A revolution in weather and climate forecasting is in progress. This has been made possible as a result of theoretical advances in our understanding of the predictability of weather and climate, and by the extraordinary developments in supercomputer technology. New problem areas have been discovered and different solutions have been found by the recent high performance computers whose performance has been increased rapidly. Such advances in the computational performance may change the strategy of development of numerical models and prediction methods. This paper discusses a brief history and current status of the supercomputers in institutions for research and forecast of weather/climate. The main purpose of this study is to provide the preliminary information about supercomputers such as architecture of system and processor. Such information would be useful for meteorologists to understand the features and the preference of supercomputers in each institution.

SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망 (Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios)

  • 김송현;남원호;전민기;홍은미;오찬성
    • 한국농공학회논문집
    • /
    • 제66권4호
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.

Low-GloSea6 기상 예측 소프트웨어의 머신러닝 기법 적용 연구 (A Study of the Application of Machine Learning Methods in the Low-GloSea6 Weather Prediction Solution)

  • 박혜성;조예린;신대영;윤은옥;정성욱
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.307-314
    • /
    • 2023
  • 슈퍼컴퓨팅 기술 및 하드웨어 기술이 발전함에 따라 기후 예측 모델도 고도화되고 있다. 한국 기상청 역시 영국 기상청으로부터 GloSea5을 도입하였고 한국 기상 환경에 맞추어 업데이트된 GloSea6를 운용 중이다. 각 대학 및 연구기관에서는 슈퍼컴퓨터보다는 사양이 낮은 중소규모 서버에서 활용하기 위해 저해상도 결합모델인 Low-GloSea6를 구축하여 사용하고 있다. 본 논문에서는 중소규모 서버에서의 기상 연구의 효율성을 위한 Low-GloSea6 소프트웨어를 분석하여 가장 많은 CPU Time을 점유하는 대기 모델의 tri_sor.F90 모듈의 tri_sor_dp_dp 서브루틴을 Hotspot으로 검출하였다. 해당 함수에 머신러닝의 한 종류인 선형 회귀 모델을 적용하여 해당 기법의 가능성을 확인한다. 이상치 데이터를 제거 후 선형 회귀 모델을 학습한 결과 RMSE는 2.7665e-08, MAE는 1.4958e-08으로 Lasso 회귀, ElasticNet 회귀보다 더욱 좋은 성능을 보였다. 이는 Low-GloSea6 수행 과정 중 Hotspot으로 검출된 tri_sor.F90 모듈에 머신러닝 기법 적용 가능성을 확인하였다.

Low-GloSea6 기상 예측 모델 기반의 비선형 회귀 기법 적용 연구 (A Study on Applying the Nonlinear Regression Schemes to the Low-GloSea6 Weather Prediction Model)

  • 박혜성;조예린;신대영;윤은옥;정성욱
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.489-498
    • /
    • 2023
  • 하드웨어의 성능 및 컴퓨팅 기술의 발전 덕분에 기후환경 변화를 대비하기 위해 기후예측 모델 또한 발전하고 있다. 한국 기상청은 GloSea6를 도입하여 슈퍼컴퓨터를 이용하여 기상 예측을 하고있으며, 각 대학 및 연구 기관에서는 중소규모 서버에서 사용하기 위해 저해상도 결합모델인 Low-GloSea6를 사용하여 기상 연구에 활용하고 있다. 본 논문에서는 중소규모 서버에서의 기상 연구의 원활한 연구를 위해 Low-GloSea6의 Intel VTune Profiler를 사용한 분석을 진행하였으며 1125.987초의 CPU Time을 수행하는 대기모델의 tri_sor_dp_dp 함수를 Hotspot으로 검출하였다. 수치적 연산을 진행하는 기존 함수에 머신러닝 기법의 하나인 비선형 회귀모델을 적용 및 비교하여 머신러닝 적용 가능성을 확인하였다. 기존 tri_sor_dp_dp 함수의 실제 연산되는 값인 1e-3 ~ 1e-20의 범위를 가지는 Output Data인 변수 "Px"를 기준으로 평가하였을때 K-최근접 이웃 회귀 모델은 MAE가 1.3637e-08, SMAPE가 123.2707%로 가장 우수하게 나타났으며 RMSE의 경우 Light Gradient Boosting Machine 회귀 모델이 2.8453e-08로 가장 우수한 성능을 보이는 것으로 측정되었다. 따라서 Low-GloSea6 수행 과정 중 tri_sor_dp_dp 함수의 데이터를 추출 후 비선형 회귀 모델을 적용한 결과로 기존의 tri_sor_dp_dp 함수의 수치적 연산 값과 K-최근접 이웃 회귀 모델을 비교하였을 때 SMAPE가 123.2707%의 오차가 발생하는 것으로 측정되어 기존 모듈의 대체 가능성이 있다는 것을 확인하였다.

기상청 국가태풍센터의 태풍 베스트트랙 생산체계 소개 (Algorithms for Determining Korea Meteorological Administration (KMA)'s Official Typhoon Best Tracks in the National Typhoon Center)

  • 김진연;황승언;김성수;오임용;함동주
    • 대기
    • /
    • 제32권4호
    • /
    • pp.381-394
    • /
    • 2022
  • The Korea Meteorological Administration (KMA) National Typhoon Center has been officially releasing reanalyzed best tracks for the previous year's northwest Pacific typhoons since 2015. However, while most typhoon researchers are aware of the data released by other institutions, such as the Joint Typhoon Warning Center (JTWC) and the Regional Specialized Meteorological Center (RSMC) Tokyo, they are often unfamiliar with the KMA products. In this technical note, we describe the best track data released by KMA, and the algorithms that are used to generate it. We hope that this will increase the usefulness of the data to typhoon researchers, and help raise awareness of the product. The best track reanalysis process is initiated when the necessary database of observations-which includes satellite, synoptic, ocean, and radar observations-has become complete for the required year. Three categories of best track information-position (track), intensity (maximum sustained winds and central pressure), and size (radii of high-wind areas)-are estimated based on scientific processes. These estimates are then examined by typhoon forecasters and other internal and external experts, and issued as an official product when final approval has been given.