• 제목/요약/키워드: wearable structure

검색결과 114건 처리시간 0.023초

유연한 착용형 손 로봇 기술 동향 (Trend of Soft Wearable Robotic Hand)

  • 인현기;정우석;강병현;이해민;구인욱;조규진
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.531-537
    • /
    • 2015
  • Hand function is one of the essential functions required to perform the activities of daily living, and wearable robots that assist or recover hand functions have been consistently developed. Previously, wearable robots commonly employed conventional robotic technology such as linkage which consists of rigid links and pin joints. Recently, as the interest in soft robotics has increased, many attempts to develop a wearable robot with a soft structure have been made and are in progress in order to reduce size and weight. This paper presents the concept of a soft wearable robot composed of a soft structure by comparing it with conventional wearable robots. After that, currently developed soft wearable robots and related issues are introduced.

보행 보조 웨어러블 시스템 설계 (Design of Assistive Wearable System for Walking)

  • 최성대;이상훈
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.111-116
    • /
    • 2019
  • With the recent acceleration of industrial technologies and active research, wearable robot technologies have been applied to various fields. To study the utility of wearable robots, basic research on kinetic mechanisms of the human body, bio-signal analysis, and system control are essential. In this study, we investigated the basic structure of a wearable system and the operating principles of a driving mechanism. The control system and supporting structure, which comprise the driving mechanism, were designed and manufactured. Motion and load analyses were performed simultaneously for the design of the kinematic drive, and the driving mechanism was constructed by analyzing walking motion. The operating conditions of the cylinder were verified by stride via driving experiments. Further, the accuracy and responsiveness of the system were confirmed by comparison with actual motion, and the system safety was validated by applying loads.

Improved wearable, breathable, triple-band electromagnetic bandgap-loaded fractal antenna for wireless body area network applications

  • Mallavarapu Sandhya;Lokam Anjaneyulu
    • ETRI Journal
    • /
    • 제46권4호
    • /
    • pp.571-580
    • /
    • 2024
  • A compact triple-band porous electromagnetic bandgap structure-loaded coplanar-waveguide-fed wearable antenna is introduced for applications of wireless body area networks. The porous structure is aimed to create a stopband or bandgap in the electromagnetic spectrum and increase breathability. The holes in the bottom electromagnetic bandgap surface increase the inductance, which in turn increases the bandwidth. The final design resonates at three bands with impedance bandwidths of 264 MHz, 100 MHz, and 153 MHz and maximum gains of 2.18 dBi, 6.75 dBi, and 9.50 dBi at 2.45 GHz, 3.5 GHz, and 5.5 GHz, respectively. In addition, measurements indicate that the proposed design can be deformed up to certain curvature and withstand human tissue loading. Moreover, the specific absorption rate remains within safe levels for humans. Therefore, the proposed antenna can suitably operate in the industrial, scientific, and medical, Bluetooth, Wi-Fi, and WiMAX bands for potential application to wireless body area networks.

무선 웨어러블 컴퓨터를 위한 WUSB over WBAN 통신 구조의 성능 분석 (Performance Evaluation of WUSB over WBAN Communication Structure for Wireless Wearable Computers)

  • 허경
    • 한국정보통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.839-847
    • /
    • 2014
  • 최근 컴퓨터 기술의 발전으로 웨어러블 컴퓨터 기술이 개발되고 있다. 이는 HCI (human-centric interface)기술과 유비쿼터스 컴퓨팅 기술을 기반으로 한다. 웨어러블 컴퓨터 시스템은 WiMedia PHY/MAC 기술과 결합된 USB 기술로 WUSB (wireless universal serial bus) 기술을 사용하여 구성할 수 있다. 본 논문은 U-Health 기능을 지원하는 무선 웨어러블 컴퓨터시스템을 구성하기 위해 WUSB기술과 WBAN (wireless body area networks) 기술을 결합한 통신시스템 구조에 초점을 맞추었다. 이를 위해 WBAN 망에서 WUSB 통신 구간을 할당하는 통신 구조를 제안한다. 제안하는 통신구조에서 WUSB 통신 구간은 WBAN Privated Period를 사용한다. 성능 평가에서는 WBAN 통신 점유율에 따른 WUSB 통신 수율을 이론적인 분석과 시뮬레이션을 통해 비교 분석하여 WUSB over WBAN 통신의 효율성을 평가하였다.

작업지향 설계를 위한 의복형 보행보조 로봇의 분류방법 (Classification of Wearable Walking-Assistive Robots for Task-Oriented Design)

  • 김헌희;정진우;장효영;김진오;변증남
    • 로봇학회논문지
    • /
    • 제1권1호
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, we propose a methodology for classifying types of lower limb disability and their mechanical structure, based on extensive survey of previous developments. We also propose a task-oriented design with human-friendly and energy-efficient assistive system. The result can be used for optimal design of wearable walking-assistive robot considering the type of disability and the content of task.

  • PDF

PVDF 나노 복합체 기반 3차원 다공성 압전 응력 센서 (3D-Porous Structured Piezoelectric Strain Sensors Based on PVDF Nanocomposites)

  • 김정현;김현승;정창규;이한얼
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.307-311
    • /
    • 2022
  • With the development of Internet of Things (IoT) technologies, numerous people worldwide connect with various electronic devices via Human-Machine Interfaces (HMIs). Considering that HMIs are a new concept of dynamic interactions, wearable electronics have been highlighted owing to their lightweight, flexibility, stretchability, and attachability. In particular, wearable strain sensors have been applied to a multitude of practical applications (e.g., fitness and healthcare) by conformally attaching such devices to the human skin. However, the stretchable elastomer in a wearable sensor has an intrinsic stretching limitation; therefore, structural advances of wearable sensors are required to develop practical applications of wearable sensors. In this study, we demonstrated a 3-dimensional (3D), porous, and piezoelectric strain sensor for sensing body movements. More specifically, the device was fabricated by mixing polydimethylsiloxane (PDMS) and polyvinylidene fluoride nanoparticles (PVDF NPs) as the matrix and piezoelectric materials of the strain sensor. The porous structure of the strain sensor was formed by a sugar cube-based 3D template. Additionally, mixing methods of PVDF piezoelectric NPs were optimized to enhance the device sensitivity. Finally, it is verified that the developed strain sensor could be directly attached onto the finger joint to sense its movements.

산업현장 적용을 위한 착용식 근력증강 로봇의 설계 (Wearable Robot Design for Industrial Application)

  • 하태준;이지석;백성훈;김석환;이정엽
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.433-440
    • /
    • 2012
  • Various studies to improve the physical abilities of the human have been steadily continued from the past to the present. Only recently such technology has been realized, and those are expected to replace or complement human beings in large part. In this paper, the current status of developed wearable robots is investigated and studies were conducted in order to apply the types of robots in industry spot. In order to apply wearable exoskeleton robot to industry which enhances human physical capability, driving range of the robot's degrees of freedom were selected by analyzing working motion, and augmentative exoskeleton structure design process is presented by analyzing require torque and power during selected working motion. At the end of this paper, the designed mock-up is introduced to validate the feasibility of designed robot.

웨어러블 컴퓨터 시스템을 위한 WUSB over WBAN 프로토콜의 에너지 효율적인 시간 동기 기술 (An Energy Efficient Time Synchronization Technique Based on WUSB over WBAN Protocol for Wearable Computer Systems)

  • 허경;손원성
    • 한국멀티미디어학회논문지
    • /
    • 제15권7호
    • /
    • pp.879-884
    • /
    • 2012
  • 본 논문에서는 웨어러블 컴퓨터 시스템을 위한 WUSB over WBAN 프로토콜에서 요구되는 에너지 효율적인 시간동기 알고리즘을 제안한다. 이를 위해 전력 소모를 최소화 하면서 정밀한 시간 동기가 이루어지는 알고리즘을 제안한다. 본 논문에서 제안하는 시간 동기 알고리즘은 웨어러블 컴퓨터의 주변 장치를 구성하는 WUSB over WBAN 프로토콜 기반 센서 노드에서, 계층적인 구조를 구성하고 Time Stamp 패킷을 송수신하는 방식으로 빠르게 실행되어 전력소모를 최소화한다.

Wearable Robot Arm의 제작 및 제어 (Design and Control of a Wearable Robot)

  • 정연구;김윤경;김경환;박종오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.277-282
    • /
    • 2001
  • As human-friendly robot techniques improve, the concept of the wearability of robotic arms becomes important. A master arm that detects human arm motion and provides virtual forces to the operator is an embodied concept of a wearable robotic arm. In this study, we design a 7 DOF wearable robotic arm with high joint torques. An operator wearing this robotic arm can move around freely because this robotic arm was designed to have its fixed point at the shoulder part of the operator. The proposed robotic arm uses parallel mechanisms at the shoulder part and the wrist part on the model of the human muscular structure of an upper limb. To reduce the computational load in solving the forward kinematics and to prevent singularity motions of the parallel mechanism, yawing motion of the parallel mechanisms was separated using a slip ling mechanism. The total weight of the proposed robotic arm is about 4 kg. An experimental result of force tracking test for the pneumatic control system and an application example for VR robot are described to show the validity of the robot.

  • PDF

열전소자로 구성된 리듐 폴리머 베터리를 이용한 웨어러블 장치 설계 및 구현 (Design and Implementation of Wearable Device using Lithium Polymer consist of Peltier)

  • 이영진;최영순
    • 중소기업융합학회논문지
    • /
    • 제5권2호
    • /
    • pp.15-20
    • /
    • 2015
  • 최근 스마트폰 기술이 발달함에 따라 웨어러블 기기의 발전 속도도 빨라지고 있다. 그러나, 웨어러블 기기는 소형으로 제작되어 사용되기 때문에 작은 전력으로 오랫동안 동작되게 하는 것이 필요하다. 본 논문에서는 웨어러블 기기 사용 편리성을 극대화하기 위해서 소형화된 웨어러블 기기에 적합한 효율적인 리듐 폴리머 배터리 모델을 설계 및 구현한다. 제안된 모델은 열전소자를 응용하여 배터리 크기를 소형화하고 배터리 용량을 경량화한 한 것이 특징이다. 또한, 제안 모델은 Peltier device의 특성을 이용하여 사람의 체온과 상온의 온도 차를 이용하여 전력을 발생시켜 충전을 하는 방식을 사용하기 때문에 웨어러블 기기의 사용 시간을 대폭 향상 시켜준다. 특히, 제안 모델은 웨어러블 기기뿐만 아니라 스마트폰의 보조 충전용으로도 사용 가능한다.

  • PDF