• 제목/요약/키워드: wear coefficients

검색결과 170건 처리시간 0.024초

갤러킨 유한요소해석법을 이용한 미케니컬 페이스 실의 윤활성능해석 (A Lubrication Performance Analysis of Mechanical Face Seals Using Galerkin Finite Element Method)

  • 최병렬;이안성;최동훈
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.916-922
    • /
    • 2001
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface between a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance of the mating seal faces gets smaller. But the very small seal clearance results in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, and it presents a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby it is one of the main design considerations. In this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries. Film pressures of the sealing dam are analyzed, including the effects of the seal face coning and tilt. Then, lubrication performances of the seals, such as opening forces, restoring moments, leakage, and dynamic coefficients, are calculated, and they are compared to the results obtained by the narrow seal approximation.

자동차 연료펌프의 오염민감도 실험 연구 (An Experimental Investigation on The Contamination Sensitivity of An Automotive Fuel Pump)

  • 이재천;장지현;신현명
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.102-108
    • /
    • 2004
  • This study addresses the contamination sensitivity test of a typical fuel pump for automotive vehicle. The objective of the study is to find the contamination sensitivity coefficient of fuel pump on specific contaminant particle sizes so that optimal fuel filter could be selected. To achieve the objective, the degradation of discharge flow rate of fuel pump was measured under the experiments of various contaminants size ranges of ISO test dust up to 80${\mu}{\textrm}{m}$. The fundamental theory of contamination sensitivity was introduced and the contamination sensitivity coefficients were estimated using the experimental data. Maximum contamination sensitivity coefficient of $5{\times}10^{-6}$ L/minㆍEa was found on the contaminant size range of 40${\mu}{\textrm}{m}$∼50${\mu}{\textrm}{m}$. The magnified picture of the surface of vane disc revealed that the abrasive wear was the principal cause of discharge flow rate degradation. Hence, this study revealed that high efficiency filter on the contaminant particle size range of 30${\mu}{\textrm}{m}$∼70${\mu}{\textrm}{m}$ especially should be used to maintain the service lift of the fuel filter.

Tribological performance of the laser surface treated CrZrSiN thin films

  • Kim, DongJun;La, JoungHyun;Lee, SangYul
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.141-142
    • /
    • 2012
  • Recently, surface texturing by atmospheric laser processing has been received lots of attention to improve the tribological performance of various surfaces and this laser texturing of surfaces could be considered in a large extent to improve tribological performance of PVD coated surface. Surface texturing could be performed by various manufacturing techniques such as indentation with hard materials, ion etching, abrasive jet machining, lithography, and Laser Surface Texturing (LST). Out of all these techniques, however it is generally accepted that laser surface texturing (LST) by atmospheric laser processing offers the most promising process as LST is very fast, environmentally-friendly, easy to control the shape and size of the microdimples. In this work various preliminary experimental results from the laser texturing on the PVD-coated steel substrate will be presented. Our results indicated that laser texturing definitely affect the tribological performance of the surfaces and the size as well as pattern type of laser texturing are one of the key factors. From the wear tests against an alumina counterpart ball at room temperature under oil-lubricated condition, laser surface texturing on the CrZrSiN films reduced the friction coefficients by approximately more than 5 times in the case of narrow patterned surfaces.

  • PDF

Performances of Plastic Pulley with High Mechanical Properties and Low Friction

  • Kim, Namil;Lee, Jung-Seok;Hwang, Byung-Kook;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho
    • Elastomers and Composites
    • /
    • 제54권2호
    • /
    • pp.135-141
    • /
    • 2019
  • Polyphenylene sulfide (PPS) was filled with glass fiber (GF), aramid fiber (AF), and solid lubricants to improve the mechanical properties and wear resistance. The addition of GF effectively enhanced the tensile strength, flexural modulus, and impact strength of PPS, while solid lubricants such as polytetrafluoroethylene (PTFE), molybdenum disulfide ($MoS_2$), and tungsten disulfide ($WS_2$) lowered the friction coefficients of the composites to below 0.3. The ball nut and motor pulley of the electric power steering (EPS) were manufactured using the PPS composites, and feasibility was ascertained thereafter by conducting the durability test. The composites filled with GF and AF showed high mechanical strength, but slip occurred at the interface between the pulley and belt while testing above $50^{\circ}C$. When small amounts of lubricants were added, the slip was no longer detected because of the suppression of friction heat. It is realized that the low friction as well as high mechanical properties is important to ensure the reliability of plastic pulleys.

그리스 윤활하에서 레이저 표면 텍스쳐링된 그루브 빗살무늬 패턴의 사잇각에 따른 미끄럼 마찰특성 평가 (Dependence of Sliding Friction Properties on the Angle of Laser Surface Texturing for a Grooved Crosshatch Pattern Under Grease Lubrication)

  • 공민선;채영훈
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.261-266
    • /
    • 2022
  • Notably, laser surface patterning facilitates tribological applications under lubricated sliding contacts. Consequently, a special pattern that can reduce the coefficient of friction under contact is considered necessary for improved machine efficiency. However, inappropriate pattern designs produce higher friction coefficients and cannot reduce friction. In this study, we use cast iron pins as specimens to investigate their friction and wear characteristics. Moreover, we experimentally investigate the correlation between the friction reduction effect and the design of groove crosshatch patterns fabricated with various angles and widths. We conduct a friction test using a pin-on-disc type tribometer under grease lubrication to study the friction reduction effect of the specimens, and we observe that the average coefficient of friction changes with the crosshatch angle and width. The experiment reveals that grooved crosshatch specimens with a crosshatch angle of 135°maximize friction reduction. The coefficient of friction of the groove specimens with a width of 120 ㎛ is lower than that of the specimens with a width of 200?. The friction reduction effect of the width of the groove is attributed to the density of the groove pattern. Thus, grooved crosshatch patterns can be designed to maximize friction reduction, and the friction property of a grooved crosshatch pattern is found to be related to its width and angle.

초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과 (Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate)

  • 나봉권;강찬형
    • 한국표면공학회지
    • /
    • 제46권2호
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.

드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구 (A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools)

  • 강용진;김도현;장영준;김종국
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

$Al/{Al_2}{O_3}$금속복합재료의 기계적 성질과 피로거동 (Mechanical Property and Fatigue Bahavior of $Al/{Al_2}{O_3}$ Metal Matrix Composite)

  • 송정일;임홍준;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.753-764
    • /
    • 1996
  • The metal matrix composites(MMC) are currently receiving a great deal of attention. These composites possess exellent mechanical and physical properties such as modulus, strength, wear resistance and thermal stability, which make them very attractive for use in automotive piston. In this study, $Al/{Al_2}{O_3}$(15%) composites are fabricated by the squeeze casting method. Mechanical properties such as tensile strength and ductility are performed at room and elevated temperature($250^{\circ}C$ and $350^{\circ}C$), respectively. Through thermomechanical analyser, thermal expansion coefficient of $Al/{Al_2}{O_3}$ composites are conducted for ranging from room temperature to ($400^{\circ}C$.And bending fatigue tests are also performed by the rotary bending machine at room temperature.The tensile strength and elastic modulus have been improved up to 38% and 35% by the addition of the reinforcements, respectively. Thermal expansion coefficients of MMCs which is located normal and parralel to the applied pressure are showed slightly different less than 10%. Fatigue strengh of the composite was improved by about 20% compared with that of unreinforced Al alloy. The results of this study will be used to understand the basic fracture behavior of MMCs and eventually to expand the applocation of MMCs as a machine parts undertaken various loadings.

터보기계에 적용되는 유체 윤활 베어링 및 댐퍼의 최신 연구 동향 (Recent Advances in Fluid Film Bearings and Dampers for Turbomachinery)

  • 이호원;정현성;김규만;이찬우;임호민;신세기;최승호;류근
    • Tribology and Lubricants
    • /
    • 제36권4호
    • /
    • pp.215-231
    • /
    • 2020
  • The paper presents extensive survey and review of experimental and analytical researches on fluid film bearings and squeeze film dampers (SFDs) for turbomachinery available in open literature (major archival international journals) published recently (2018 and 2019 only). Over 60 published research works are reviewed based on the research topics and objectives, the types of bearings, size of bearings, and main design parameters with a brief summary of experiments and/or predictions in each work. Some important findings and general observations about the experimental and/or predictive data are also presented. There are several major trends observed throughout the survey. A large portion of the papers focuses on bearing surface textures and effect of operating and assembly conditions on static and/or dynamic forced performances, as well as bearing surface roughness and wear patterns. Researches on geometry of orifices and recesses in hydrostatic (or hybrid) bearings, as well as bearing system stability predictions using thermohydrodynamic analysis and computational fluid dynamics (CFD), are considered as significant topics. Studies on SFDs mainly focus on experimental identification of force coefficients for various SFD geometries and sealing conditions. Reliable experiments of fluid film bearings and SFDs along with the development of experimentally benchmarked predictive tools enable reinforcement of the path for reliable implementations of the bearing components into high performance rotating machinery operating at extreme and harsh conditions. The extensive list of sources of recent experiments in the available open literature is a welcome addition to the analytical community to gauge the accuracy of predictive tools.

Proposed surface modeling for slip resistance of the shoe-floor interface

  • Kim, In-Ju
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.515-528
    • /
    • 1995
  • Slips and falls are the major causes of the pedestrian injuries in the industry and the general community throughout the world. With the awareness of these problems, the friction coefficients of the interface between floorings and footwear have been measured for the evaluation of slip resistant properties. During this measurement process, the surface texture has been shown to be substantially effective to the friction mechanism between shoe heels and floor surfaces under various types of walking environment. Roughness, either of the floor surface or shoe heels, provides the necessary drainage spaces. This roughness can be designed into the shoe heel but this is inadequate in some cases, especially a wear. Therefore, it is essential that the proper roughness for the floor surface coverings should be provided. The phenomena that observed at the interface between a sliding elastomer and a rigid contaminated floor surface are very diverse and combined mechanisms. Besides, the real surface geometry is quite complicate and the characteristics of both mating surfaces are continuously changing in the process of running-in so that a finite number of surface parameters can not provide a proper description of the complex and peculiar shoe - floor contact sliding mechanism. It is hypothesised that the interface topography changes are mainly occurred in the shoe heel surfaces, because the general property of the shoe is soft in the face of hardness compared with the floor materials This point can be idealized as sliding of a soft shoe heel over an array of wedge-shaped hard asperities of floor surface. Therefore, it is considered that a modelling for shoe - floor contact sliding mechanism is mainly depended upon the surface topography of the floor counterforce. With the model development, several surface parameters were measured and tested to choose the best describing surface parameters. As the result, the asperity peak density (APD) of the floor surface was developed as one of the best describing parameters to explain the ambiguous shoe - floor interface friction mechanism. It is concluded that the floor surface should be continuously monitored with the suitable surface parameters and kept the proper level of roughness to maintain the footwear slip resistance. This result can be applied to the initial stage of design for the floor coverings.

  • PDF