• Title/Summary/Keyword: wear and corrosion-resistance

Search Result 263, Processing Time 0.029 seconds

A Study on the Effect of the $CO_2$ Gas on the Growth Mechanism of the Nitrocarburized Layer (연질화층의 성장기구에 미치는 $CO_2$가스의 영향에 관한 연구)

  • Lee, Gu-Hyeon
    • 연구논문집
    • /
    • s.25
    • /
    • pp.175-184
    • /
    • 1995
  • Mechanical properties of the gas nitrocarburized product depend on the surface compound layer and the diffusion zone formed. The compound layer improves the wear resistance, and the corrosion resistance. Though phase composition, pore layer and growth rate of the compound layer varies according to the treatment time, temperature and the kind of the steel substrate, they are strongly influenced by the environmental gas composition. In the current study, the growth behavior of the compound layer and diffusion zone of the carbon steel and the alloy steel upon nitrocarburizing treatment at $570^{\circ}C$, and the phase composition and the variation in the growth rate of the compound layer according to the variation of the gas environment which was the medium of the nitriding and carburizing reaction were investigated.

  • PDF

Ni-BASE ALLOY SYSTEMS AS ALTERNATIVE TO HEXAVALENT CHROMIUM (경질크롬도금 대체용 Ni계 합금도금 기술)

  • Chang, Do-Yon;Lee, Kyu-Hwan;Kwon, Sik-Chol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.11-11
    • /
    • 2003
  • Electroplated hexavalent chromium coatings have been used in many technical applications since it was invented by G.J. Sargent in 1920. Because of the environmental problems and health risks associated with the use of hexavalent chromium, there has been an extensive search for alternative coatings with properties such as corrosion resistance and wear resistance, at a reasonable cost. However there is no single substitute that meets all the desirable performance characteristics of chromium. Advanced techniques, such as alloy plating, electroless plating, trivalent chromium plating, plasma and thermal spray coating, PVD and ion implantation, have been applied for replacing hexavalent chromium plating.

  • PDF

Review on Electroless Plating(I) (무전해도금(I))

  • Kim, Man;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.121-127
    • /
    • 1986
  • There are many plating methods already commercially employed in te surface technology. One of the plating methods is electroless (chemical) plating, which is deposited by auto-catalytic reduction of metallic ion with the reducing agent in the plating bath. And it has many advantages comparing with electrolytic plating in respect of properties of deposit, such as corrosion resistance, wear resistance, uniformity, hardness, adhesion and so on. So, electroless plating is the fatest growing process in metallization of plastic and electronic industry. The properties and numerous applications of electroless deposits are attracting more and more attention from finish specifies. Many metal finishers are considering set-up of new electroless line in their shops. This review will be beneficial to domestic metal finishers to understand the real status of present electroless plating technology. It will also provide some knowledge on the economic aspect of electroless plating for the commercial application of specific parts.

  • PDF

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

Improvement of Adhesion Strength of DLC Films on Nitrided Layer Prepared by Linear Ion Source

  • Shin, Chang-Seouk;Kim, Wang-Ryeol;Park, Min-Seok;Jung, Uoo-Chang;Chung, Won-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.177-179
    • /
    • 2011
  • The purpose of this study is to enhance an adhesion between substrate and Diamond-like Carbon (DLC) film. DLC has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion because of weak bonding between DLC film and the substrate. For improvement adhesion, a layer between DLC film and the substrate was prepared by dual post plasma. DLC film was deposited on nitrided layer by linear ion source. The composed compound layer between substrate and DLC film was investigated by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The synthesized bonding structure of DLC film was analyzed using a micro raman spectrometer. Mechanical properties were measured by nano-indentation. In order to clarify the mechanism for improvement in adhesive strength, it was observed by scratch test.

  • PDF

Effect of Phosphorous Acid Concentration on Mechanical Properties of Ni-P Electrodeposits (니켈-인 도금 층의 기계적 성질에 미치는 아인산 농도의 영향)

  • Kang, Soo Young;Yang, Seung gi;Hwang, Woon suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.100-104
    • /
    • 2015
  • The nickel alloys gets a great deal of attention due to their good mechanical, chemical and magnetic properties. Especially Ni-P alloy systems are very attractive due to their good corrosion resistance and the wear resistance in important technological applications. In this study, the effects of phosphorus acid concentration in plating solution on composition of Ni-P alloy coatings were studied. The Ni-P electrodeposits of the various P contents were investigated in order to understand effect of the composition on mechanical properties of Ni-P electrodeposits. The mechanical properties of electrodeposits increased as the P content in electrodeposits increase. The results of mechanical properties were explained by grain size and P solid solution effect. The effects of heat treatment on mechanical properties of Ni-P alloy coatings were also studied.

Welding Characteristics of SCP1 on CW Nd:Yag Laser (CW Nd:YAG 레이저에 의한 SCP1의 용접특성)

  • Shin, Byung-Heon;Yoo, Young-Tae;Shin, Ho-Jun;Yun, Chul-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.35-43
    • /
    • 2007
  • Laser welding of metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for metals with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the butt welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1325W of the laser power, and 1.4m/min of laser welding speed.

A study on the surface accuracy according to applied load in burnishing of steel

  • Lee, Y.C.;Yuck, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.70-76
    • /
    • 1993
  • Burnishing, as a micro plastic working, is a finishing process used in conjuction with or in replacement of reaming, honing, lapping, and/or grinding. The tool which is a smooth, round steel ball slightly larger than the bore is pushed through pre-machined hole, leaving a closely controlled finish. The major application of the processes is to improve the geometric and mechanical properties of surface such as (1) dimensional accuracy, (2) surface roughness, (3) bearing ratio, (4) surface hardness, (5) wear resistance, (6) fatigue and corrosion resistance, etc. Therefore, this study carried out some experiments to illustrate the theoretical formula and to investigate surface accuracy (e.g. variation of diameter, surface roughness, bearing ratio) in accordance with the applied burnishing load.

  • PDF

Frictional behaviour of Oxide Films Produced on S45C Steel by Plasma Nitrocarburizing and Post Plasma Oxidation Treatment (플라즈마 질탄화 & 후산화처리로 S45C강에 형성된 산화막의 마찰거동)

  • Jeong, Kwang-Ho;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.766-770
    • /
    • 2006
  • The frictional behavior of oxide films on top of the plasma nitrocarburized compound layers was investigated in terms of post-oxidation treatment temperatures. The post-oxidation treatment at both temperatures($400^{\circ}C,\;500^{\circ}C$) produced magnetite($Fe_3O_4$) films which led to a significant enhancement in corrosion resistance. However, this process did not result in any improvement in frictional behavior of the nitrocarburized surface. The wear mechanisms were governed predominantly by the abrasive action of the slider on the surface irrespective of the counterface material(SiC and Bearing steel). When the specimen was sliding against a SiC counterface, the oxide films were destroyed during the early stage of the sliding process and the wear debris of the oxide film at the sliding track had a great influence on the friction coefficient. On the other hand, when sliding against a bearing steel counterface, the slider was mainly worn out due to the much higher hardness of the surface hardened layer. The fluctuation of the friction coefficient of $400^{\circ}C$-oxidized/ nitrocarburized specimen is much severer than that of $500^{\circ}C$ specimen, due to the less amount of wear debris.

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.