• Title/Summary/Keyword: weapon effectiveness

검색결과 169건 처리시간 0.175초

Text Mining과 네트워크 분석을 활용한 교육훈련용 모의사격 시뮬레이션 경험지식 분석 (Analysis of Experience Knowledge of Shooting Simulation for Training Using the Text Mining and Network Analysis)

  • 김성규;손창호;김종만;정세교;박재현;전정환
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.700-707
    • /
    • 2017
  • Recently, the military need more various education and training because of the increasing necessity of various operation. But the education and training of the military has the various difficulties such as the limitations of time, space and finance etc. In order to overcome the difficulties, the military use Defense Modeling and Simulation(DM&S). Although the participants in training has the empirical knowledge from education and training based on the simulation, the empirical knowledge is not shared because of particular characteristics of military such as security and the change of official. This situation obstructs the improving effectiveness of education and training. The purpose of this research is the systematizing and analysing the empirical knowledge using text mining and network analysis to assist the sharing of empirical knowledge. For analysing texts or documents as the empirical knowledge, we select the text mining and network analysis. We expect our research will improve the effectiveness of education and training based on simulation of DM&S.

다목표 의사결정 방법론 기반의 수상함 획득대안 분석 (An Analysis of Alternatives for the Acquisition of Naval Surface Ships based on a Multi-Objective Decision-Making Method)

  • 김경환;이재천
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.3841-3848
    • /
    • 2012
  • 획득대안 분석 프로세스는 비용, 일정, 성능 및 위험이라는 제약사항 내에서 다양한 후보 대안들 가운데에서 최적의 대안을 선택하는 것이다. 신규 무기체계 획득을 위해 사용하고 있는 기존의 대안 분석 방법은 일반적으로 요구사항 분석, 설계 조합, 그리고 비용 추정을 통해 수행되고 있다. 본 논문은 함정 설계개념 정제 및 물자적 대안분석 단계에서 다목표 의사결정 방법을 기반으로 개선된 획득대안 분석 방법을 제시한 것이다. 이번 연구에서는 시스템공학 원리를 기반으로 효과도 분석, 사업 비용 추정, 그리고 위험도 평가 기법을 활용하여 차세대 다목적 훈련지원함에 대한 실질적인 응용 및 적용 연구를 수행하였다.

휴리스틱 기법을 이용한 포병진지 구축작전시 공병장비 최적배정 (Optimal Allocation Heuristic Method of Military Engineering Equipments during Artillery Position Construction Operation)

  • 박세환;이문걸
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.11-21
    • /
    • 2017
  • Artillery fire power due to effectiveness which is hard to predict well-planned and surprising attack can give a fear and shock to the personnel and is a very core weapon system and takes a critical role in wartime. Therefore in order to maximize operational effectiveness, Army required protecting artillery and takes a quick attack action through rapid construction of artillery's positions. The artillery use artillery's position to prevent exposure by moving to other position frequently. They have to move and construct at new artillery's positions quickly against exposing existed place by foe's recognition. These positions should be built by not manpower but engineering construction equipment. Because artillery positions have to protect human and artillery equipment well and build quickly. Military engineering battalion have lots of construction equipment which include excavator, loader, dozer, combat multi-purposed excavator, armored combat earthmover dump truck and so on. So they have to decide to optimal number of Team combining these equipments and determine construction sequence of artillery's position in operational plan. In this research, we propose to decide number of Team efficiently and allocate required construction's positions for each Team under constraints of limited equipments and time. To do so, we develop efficient heuristic method which can give near optimal solution and be applied to various situation including commander's intention, artillery position's priority or grouping etc. This heuristic can support quick and flexible construction plan of artillery positions not only for using various composition's equipment to organize Teams but also for changing quantity of positions.

선유도어뢰 전술 효과도 분석을 위한 교전수준 모델 개발 연구 (Engagement Level Simulator Development for Wire-Guided Torpedo Performance Analysis)

  • 조현진
    • 한국시뮬레이션학회논문지
    • /
    • 제27권1호
    • /
    • pp.33-38
    • /
    • 2018
  • 본 연구에서는 선유도 중어뢰의 전술 효과도 예측을 위하여 개발한 교전수준 시뮬레이터에 대해서 시뮬레이터 개발에 적용된 개념 및 구성요소 모델에 대해서 소개하고 있다. 특히 어뢰의 공격문제 해결을 위하여 기하학적 모델에 따른 해(Closed-form solution)를 도출하였고, 어뢰의 공격유도 방법에 비례항법 유도를 적용하여 구현하였다. 표적함에 대해서는 속도와 소음의 상충관계로 인한 피탐 가능성을 고려하였다. 어뢰의 초기위치에 따른 공격 소요 시간을 계산하고 이를 도시화하는 과정을 통하여 도출된 해의 정확성을 확인 할 수 있었고, 현실적인 공격유도 방법 및 소음원 모사를 통하여 시뮬레이터 충실도를 높일 수 있었다. 시뮬레이터는 다양한 전술상황을 가정하여 결과를 분석 할 수 있도록 자유도가 높게 개발되었으며, 구성요소 궤적 분석 및 전방위 요격 성공률 분석이 가능하여 전장 상황의 흐름을 파악하고 전술에 대한 이해를 높이는데 도움이 된다.

재난 구호품의 효과적 분배를 위한 혼합정수계획 모형 (A Mixed-Integer Programming Model for Effective Distribution of Relief Supplies in Disaster)

  • 김흥섭
    • 산업경영시스템학회지
    • /
    • 제44권1호
    • /
    • pp.26-36
    • /
    • 2021
  • The topic of this study is the field of humanitarian logistics for disaster response. Many existing studies have revealed that compliance with the golden time in response to a disaster determines the success or failure of relief activities, and logistics costs account for 80% of the disaster response cost. Besides, the agility, responsiveness, and effectiveness of the humanitarian logistics system are emphasized in consideration of the disaster situation's characteristics, such as the urgency of life-saving and rapid environmental changes. In other words, they emphasize the importance of logistics activities in disaster response, which includes the effective and efficient distribution of relief supplies. This study proposes a mathematical model for establishing a transport plan to distribute relief supplies in a disaster situation. To determine vehicles' route and the amount of relief for cities suffering a disaster, it mainly considers the urgency, effectiveness (restoration rate), and uncertainty in the logistics system. The model is initially developed as a mixed-integer nonlinear programming (MINLP) model containing some nonlinear functions and transform into a Mixed-integer linear programming (MILP) model using a logarithmic transformation and piecewise linear approximation method. Furthermore, a minimax problem is suggested to search for breakpoints and slopes to define a piecewise linear function that minimizes the linear approximation error. A numerical experiment is performed to verify the MILP model, and linear approximation error is also analyzed in the experiment.

가상현실을 이용한 육군 대공무기 교육효과에 관한 연구 (A Study of Effectiveness on Military Training of Army Anti-aircraft Weapon using Virtual Reality)

  • 김도헌;민승희;김익현
    • 한국콘텐츠학회논문지
    • /
    • 제21권5호
    • /
    • pp.499-507
    • /
    • 2021
  • 본 연구는 육군 교육훈련 효과를 향상시키기 위해 실장비, 가상현실, 동영상을 이용한 교육효과를 비교하여 어떤 방식의 교육이 우수한지를 검증하는데 있다. 육군은 실전적 훈련환경을 구현하기 위해 많은 노력을 기울였지만 1) 도시화에 따른 훈련장 부지확보의 제한, 2) 민원제기에 따른 대민갈등 심화, 3) 국방예산 확보에 어려움으로 인해 실전적 훈련환경을 제공하는 것은 점차 어려워지고 있다. 가상현실을 활용하면 실제 전장을 간접적으로 체험하고 비용을 절감할 수 있는 장점이 있다. 특히, 위험하거나 고가의 무기체계의 경우에는 가상현실을 적용한 훈련이 더욱 요구된다. 본 논문은 가상현실이 실제 무기체계에 비해 얼마나 효과적인지 연구한다. 연구결과, 가상현실 교육은 실장비 교육보다 효과가 다소 낮지만 동영상 교육보다는 효과가 높았다. 앞으로 이번 연구결과를 바탕으로 가상현실 기반의 교육효과 분석을 위한 기초자료로 활용이 가능할 것이다.

Simulation of Conceptual Designs of a Three-Surface Stealth Strike Fighter

  • Kuizhi, Yue;ShiChun, Chen;Wenlin, Liu;Dazhao, Yu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.366-373
    • /
    • 2014
  • A conceptual design of a three-surface strike fighter was studied and stealth performance was taken into account to enhance survivability and battle effectiveness. CATIA was used to design the aircraft's three-dimensional prototype model and the weapon carriage arrangement was also studied. The aircraft's RCS characteristics and distributions under X, S, C, and L bands were simulated using the RCSPlus software, which is based on the PO method. Pressure and velocity distributions of the flow field were also simulated using CFD. A turbulence model was based on standard $k-{\varepsilon}$ function and N-S functions were used during the CFD computation. Lift coefficients, drag coefficients, and lift-to-drag ratio were obtained by aerodynamic simulation. The results showed that: (1) the average value of head-on RCS between ${\pm}30^{\circ}$ is below -3.197 dBsm, and (2) the lift coefficient is 0.34674, the drag coefficient is 0.04275, and the lift-to-drag ratio is 8.11087 when the attack angle is $2.5^{\circ}$.

시간지연을 고려한 간접 되먹임 구조 칼만필터의 수치안정성 향상 기법 (Numerical Stability Improvement Technique for Indirect Feedback Kalman Filter in Delayed-Measurement Systems)

  • 남성호;성창기;김태원
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.25-32
    • /
    • 2017
  • Most of weapon systems use aided navigation system which integrates inertial navigation and aiding sensors to compensate the INS errors increasing with the passage of time. Various aid sensors can be applied such as Global Navigation Satellite System (GNSS), radar, barometer, etc., but there might exist time delay caused by signal processing or transferring aid information. This time delay leads out-of-sequence measurements (OOSM) systems. Previously, optimal and suboptimal measurment update method for OOSM systems, where the time delay length are known, are proposed. However, previous algorithm does not guarantee the positive definite property of covariance matrix. In order to improve numerical stability for aided navigation using delayed-measurement, this paper proposes a new measurement covariance update algorithm be similar to Joseph-form in Kalman filter. Futhermore, we propose how to implement it in indirect feedback Kalman filter structure, which is commonly used in aided navigation systems, for time-delayed measurement systems. Simulation and vehicle test results show effectiveness of a proposed algorithm.

CMMI 기반의 무기체계 연구개발 프로세스 성과 모델 적용사례 연구 (A Case Study of CMMI-based R&D Process Performance Model for Weapon Systems)

  • 이혜진;장재덕;차승훈;최상욱;유제상
    • 시스템엔지니어링학술지
    • /
    • 제16권1호
    • /
    • pp.43-50
    • /
    • 2020
  • Many companies around the world are applying CMMI to improve the organization's ability to perform projects, and many others are pushing to obtain CMMI certification as more and more of them are offered as preconditions for participation in projects or supply product. Organizations with high maturity such as CMMI Level 4~5, analyze the accumulated R&D data of the organization and establish the performance management model so that R&D performance is continuously managed. So this paper shows the R&D performance management model made by LIGNex1 which is certificated with CMMI Level 5 organization and the case applied to the project, including its effectiveness.

무기체계 신뢰도 예측시 임무주기 적용 방안에 대한 연구 (Methodologies of Duty Cycle Application in Weapon System Reliability Prediction)

  • 윤희성;정다운;이은학;강태원;이승헌;허만옥
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권4호
    • /
    • pp.433-445
    • /
    • 2011
  • Duty cycle is determined as the ratio of operating time to total time. Duty cycle in reliability prediction is one of the significant factors to be considered. In duty cycle application, non-operating time failure rate has been easily ignored even though the failure rate in non-operating period has not been proved to be small enough. Ignorance of non-operating time failure rate can result in over-estimated system reliability calculation. Furthermore, utilization of duty cycle in reliability prediction has not been evaluated in its effectiveness. In order to address these problems, two reliability models, such as MIL-HDBK-217F and RIAC-HDBK-217Plus, were used to analyze non-operating time failure rate. This research has proved that applying duty cycle in 217F model is not reasonable by the quantitative comparison and analysis.