• Title/Summary/Keyword: weakened linear growth condition

Search Result 5, Processing Time 0.055 seconds

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

AN EXISTENCE AND UNIQUENESS THEOREM OF STOCHASTIC DIFFERENTIAL EQUATIONS AND THE PROPERTIES OF THEIR SOLUTION

  • BAE, MUN-JIN;PARK, CHAN-HO;KIM, YOUNG-HO
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.491-506
    • /
    • 2019
  • In this paper, we show the existence and uniqueness of solution to stochastic differential equations under weakened $H{\ddot{o}}lder$ condition and a weakened linear growth condition. Furthermore, the properties of their solutions investigated and estimate for the error between Picard iterations $x_n(t)$ and the unique solution x(t) of SDEs.

UNIFORM Lp-CONTINUITY OF THE SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS

  • Kim, Young-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.491-498
    • /
    • 2013
  • This note is concerned with the uniform $L^p$-continuity of solution for the stochastic differential equations under Lipschitz condition and linear growth condition. Furthermore, uniform $L^p$-continuity of the solution for the stochastic functional differential equation is given.

AN EXISTENCE OF THE SOLUTION TO NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS UNDER SPECIAL CONDITIONS

  • KIM, YOUNG-HO
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.1_2
    • /
    • pp.53-63
    • /
    • 2019
  • In this paper, we show the existence of solution of the neutral stochastic functional differential equations under non-Lipschitz condition, a weakened linear growth condition and a contractive condition. Furthermore, in order to obtain the existence of solution to the equation we used the Picard sequence.

AN ESTIMATE OF THE SOLUTIONS FOR STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Kim, Young-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1549-1556
    • /
    • 2011
  • In this paper, we give an estimate on the difference between $x^n(t)$ and x(t) and it clearly shows that one can use the Picard iteration procedure to the approximate solutions to stochastic functional differential equations with infinite delay at phase space BC(($-{\infty}$, 0] : $R^d$) which denotes the family of bounded continuous $R^d$-valued functions ${\varphi}$ defined on ($-{\infty}$, 0] with norm ${\parallel}{\varphi}{\parallel}={\sup}_{-{\infty}<{\theta}{\leq}0}{\mid}{\varphi}({\theta}){\mid}$ under non-Lipschitz condition being considered as a special case and a weakened linear growth condition.