• Title/Summary/Keyword: weak diffraction effect

Search Result 22, Processing Time 0.02 seconds

Structure of Ni and NiO Nanoparticles Observed by X-ray Coherent Diffraction Imaging

  • Kim, Chan;Kim, Yoon-Hee;Hamh, Sun-Young;Son, Jun-Gon;Khakurel, Krishna Prasad;Iqbal, Mazhar;Noh, Do-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.542-543
    • /
    • 2012
  • Coherent diffraction imaging (CDI) method using hard x-ray at 5.46 keV was applied to study assembly of Ni and Ni oxide nano structures formed on a Si3N4 membrane. Density distribution of Ni nano-particles was obtained quantitatively with about 15 nm lateral resolution by reconstructing images from the speckle diffraction pattern. In addition, reconstructed images of nickel oxide particles indicated that Ni atoms diffuse out during the oxidation process leaving pores inside the nickel oxide crust. Furthermore, we recognize that really weak phase object, less than 5 nm thickness of Ni residues, can be reconstructed due to the reference particles. We achieved quantitative information of nanometer sized materials and demonstrate the effect of reference particles by using hard x-ray coherent diffractive imaging method.

  • PDF

Superconducting properties and microstructure of electron beam irradiated MgB2 superconductors

  • Kim, C.J.;Lee, Y.J.;Cho, I.H.;Jun, B.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.18-22
    • /
    • 2022
  • The effect of electron beam (EB) irradiation on superconducting properties and microstructures of MgB2 bulk superconductors were investigated. At E-beam doses of 1×1016 e/cm2 and 1×1017 e/cm2, the effect of irradiation on a superconducting transition temperature (Tc) of MgB2 was weak. As a dose increases to 5×1017 e/cm2, Tc decreases by 0.5 K. The critical current density (Jc) measured at 4.2 K and 20 K, and 0 T - 5 T increases slightly as exposure time increases. X-ray diffraction for the irradiation surface of MgB2 shows that the diffraction intensity of (hkl) peaks decreases proportionally as the exposure time increases. This indicates that the crystallinity of MgB2 was degraded by irradiation. TEM investigation for the irradiated sample showed distorted lattice structure, which is consistent with the XRD results. The Jc increase and Tc reduction of MgB2 by irradiation are believed to be caused by the lattice distortion.

How Shock Wave Interacts with a Vortex ?

  • Chang Keun-Shik;Chang Se-Myong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.1-7
    • /
    • 2004
  • When a vortex diffracts upon encountering a vortex, many strong and weak waves are produced in the course of interaction. They are the cause of shock wave attenuation and noise production. This phenomenon is fundamental to understanding the more complex supersonic turbulent Jet noise. In this paper we have reviewed the research on shock-vortex interaction we have carried on last seven years. We have computationally investigated the parameter effect. When a shock is strong, shock diffraction pattern becomes complex since the slip lines from the triple points on Mach stem curl into the vortex, causing an entropy layer. When the vortex is unstable, vortexlets are brought about each of which make shock diffraction of a reduced intensity. Strong vortex produces quadrupole noise as it impinges into a vortex. Elementary interaction models such as shock splitting, shock reflection, and shock penetration are presented based on shock tube experiment. These models are also verified by computational approach. They easily explain production and propagation of the aforementioned quadrupole noise, Diverging acoustics are explained in terms of shock-vortexlet interactions for which a computational model Is constructed.

  • PDF

Numerical simulation of fish nets in currents using a Morison force model

  • Cifuentes, Cristian;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.143-155
    • /
    • 2017
  • For complex flexible structures such as nets, the determination of drag forces and its deformation is a challenging task. The accurate prediction of loads on cages is one of the key steps in designing fish farm facilities. The basic physics with a simple cage, can be addressed by the use of experimental studies. However, to design more complex cage system for various environmental conditions, a reliable numerical simulation tool is essential. In this work, the current load on a cage is calculated using a Morison-force model applied at instantaneous positions of equivalent-net modeling. Variations of solidity ratio ($S_n$) of the net and current speed are considered. An equivalent array of cylinders is built to represent the physical netting. Based on the systematic comparisons between the published experimental data for Raschel nets and the current numerical simulations, carried out using the commercial software OrcaFlex, a new formulation for $C_d$ values, used in the equivalent-net model, is presented. The similar approach can also be applied to other netting materials following the same procedure. In case of high solidity ratio and current speed, the hybrid model defines $C_d$ as a function of Re (Reynolds number) and $S_n$ to better represent the corresponding weak diffraction effects. Otherwise, the conventional $C_d$ values depending only on Re can be used with including shielding effects for downstream elements. This new methodology significantly improves the agreement between numerical and experimental data.

Crystallization of Poly(vinylidene fluoride)-SiO2 Hybrid Composites Prepared by a Sol-gel Process

  • Cho, Jae Whan;Sul, Kyun Il
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.135-140
    • /
    • 2001
  • Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO$_2$ were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of $SiO_2$ networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-lR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the $SiO_2$ networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDF ${\gamma}$-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2$\theta$=$21^{\circ}$ due to PVDF crystallization, and Intensity increased grade-ally with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of $SiO_2$ networks. That is, $SiO_2$ content directly influenced preference and disturbance fur crystallization. In polymer-rich hybrids, $SiO_2$ networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum portent crystallinity of PVDF occurred at the content of 3.7 wt% $SiO_2$ and was higher than that of pure PVDF. However. beyond about 10 wt% $SiO_2$, the crystallization of PVDF was strongly confined.

  • PDF

Effect of Ag interlayer on the optical and electrical properties of ZnO thin films (Ag 중간층 두께에 따른 ZnO 박막의 광학적, 전기적 특성 연구)

  • Kim, Hyun-Jin;Jang, Jin-Kyu;Choi, Jae-Wook;Lee, Yeon-Hak;Heo, Sung-Bo;Kong, Young-Min;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.91-95
    • /
    • 2022
  • ZnO single layer (60 nm thick) and ZnO with Ag interlayer (ZnO/Ag/ZnO; ZAZ) films were deposited on the glass substrates by using radio frequency (RF) and direct current (DC) magnetron sputter to evaluate the effectiveness of Ag interlayer on the optical visible transmittance and the conductivity of the films. In the ZAZ films, the thickness of ZnO layers was kept at 30 nm, while the Ag thickness was varied as 5, 10, 15 and 20 nm. In X-ray diffraction (XRD) analysis, ZnO films show the (002) diffraction peak and ZAZ films also show the weak ZnO (002) peak and Ag (111) diffraction peak. As a thickness of Ag interlayer increased to 20 nm, the grain size of the Ag films enlarged to 11.42 nm and the optical band gap also increased from 4.15 to 4.22 eV with carrier concentration increasing from 4.9 to 10.5×1021 cm-3. In figure of merit measurements, the ZAZ films with a 10 nm thick Ag interlayer showed the higher figure of merit of 4.0×10-3 Ω-1 than the ZnO single layer and another ZAZ films. From the experimental result, it is assumed that the Ag interlayer enhanced effectively the opto-electrical performance of the ZAZ films.

Annealing Effect on Structure of Poly(trimethylene terephthalate) Undrawn Fibers

  • Murase, Shigemitsu;Ohtaki, Manabu
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.59-60
    • /
    • 2003
  • The undrawn monofilament of poly (trimethylene terephthalate) (PTT) was obtained by melt-spinning. After being annealed at 40 C it was analyzed by the measurements of DSC, DMA, WAXD and ATR FT-IR. Tg of PTT fiber after annealing for more than 96 hours was 20 C higher than that before annealing as determined by the DSC and DMA measurements. The WAXD analysis showed very weak diffraction peaks at 2$\theta$=17$^{\circ}$ and 2$\theta$=24$^{\circ}$ for the annealing time of more than 96 hours. The ATR FT-IR measurements made clear the conformational change of methylene chains of PTT glycol residue from random to gauche-gauche conformation.

  • PDF

Strengthening of cement blended soft clay with nano-silica particles

  • Thomas, Geethu;Rangaswamy, Kodi
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.505-516
    • /
    • 2020
  • In recent years, Nano-technology significantly invaded the field of Geotechnical engineering, particularly in soil stabilisation techniques. Stabilisation of weak soil is envisioned to modify various soil characteristics by the addition of natural or synthetic materials into the virgin soil. In the present study, laboratory experiments were executed to investigate the influence of nano-silica particles in the consistency limits, compressive strength of the soft clay blended with cement. The results revealed that the high compressibility behaviour of soft clay modified to medium-stiff condition with fewer dosages of cement and nano-silica. The mechanism behind the strength development is verified with the previous researches as well as from Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction test (XRD) and Scanning Electron Microscopy (SEM) analysis. Based on the results, the presence of nano-silica in soft clay blended with cement has a positive effect on the behaviour of soil. This technique proves to be very economical and less detrimental to the environment.

Effect of Deposition Temperature on the Properties of Eu3+-doped MgMoO4 Phosphor Thin Films (증착 온도가 Eu3+ 이온이 도핑된 MgMoO4 형광체 박막의 특성에 미치는 영향)

  • Kang, Dongkyun;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • $Eu^{3+}$-doped $MgMoO_4$ phosphor thin films were deposited on quartz substrates by radio frequency magnetron sputtering with changing various growth temperatures. The effects of growth temperature on the structure, transmittance, optical band gap, and luminescence of the phosphor thin films were characterized. All the phosphor thin films, irrespective of growth temperature, showed a monoclinic structure with a main (220) diffraction peak. The thin film deposited at a growth temperature of $400^{\circ}C$ indicated an average transmittance of 90% in the wavelength range of 500 ~ 1100 nm and band gap energy of 4.81 eV. The excitation spectra of the phosphor thin films consisted of a broad charge transfer band peaked at 284 nm in the range of 230 ~ 330 nm and two weak peaks located at 368 and 461 nm, respectively. The emission spectra under ultraviolet excitation at 284 nm exhibited a sharp emission peak at 614 nm and several weak bands. All the phosphor thin films showed high asymmetry ratio values, indicating that $Eu^{3+}$ ions incorporated into the host lattice occupied at the non-inversion symmetry sites. The results suggest that the growth temperature plays an important role in growing high-quality phosphor thin films.

Effect of Annealing Temperature on the Properties of NaNbO3:Eu3+ Phosphor Thin Films Deposited on Quartz Substrates (석영 기판 위에 증착된 NaNbO3:Eu3+ 형광체 박막의 특성에 열처리 온도가 미치는 영향)

  • Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.96-101
    • /
    • 2021
  • NaNbO3:Eu3+ phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering at a growth temperature of 100 ℃, with subsequent annealing at temperatures of 800, 900, and 1000 ℃. The effects of annealing temperature on the structural, morphological, and optical properties of the thin films were investigated. The NaNbO3:Eu3+ sputtering target was synthesized by a solid-state reaction of raw materials Na2CO3, Nb2O5, and Eu2O3. The X-ray diffraction patterns exhibited that the thin films had two mixed phases of NaNbO3 and Eu2O3. Surface morphologies were investigated by using field emission-scanning electron microscopy and indicated that the grains of the thin film annealed at 1000 ℃ showed irregular shapes with an average size of approximately 300 nm. The excitation spectra of Eu3+-doped NaNbO3 thin film consisted of a strong charge transfer band centered at 304 nm in the range of 240-350 nm and two weak peaks at 395 and 462 nm, respectively, resulting from the 7F05L6 and 7F05H2 transitions of Eu3+ ions. The emission spectra under excitation at 304 nm exhibited an intense red band centered at 614 nm and two weak bands at 592 and 681 nm. As the annealing temperature increased from 800 ℃ to 1000 ℃, the intensities of all the emission bands and the band gap energies gradually increased. These results indicate that the higher annealing temperature enhance the luminescent properties of NaNbO3:Eu3+ thin films.