• 제목/요약/키워드: weak column-strong beam

검색결과 69건 처리시간 0.023초

Hysteretic Energy Characteristics of Steel Moment Frames Under Strength Variations

  • Choi, Byong Jeong;Kim, Duck Jae
    • Architectural research
    • /
    • 제2권1호
    • /
    • pp.61-69
    • /
    • 2000
  • This research focused on the hysteretic energy performance of 12 steel moment-resisting frames, which were intentionally designed by three types of design philosophies, strength control design, strength and drift control design, and strong-column and weak-beam control design. The energy performances of three designs were discussed In view of strength increase effect, stiffness increase effect, and strong-column and weak-beam effects. The mean hysteretic energy of the 12 basic systems were statically processed and compared to that of single-degree-of-freedom systems. Hysteretic energy was not always increased with an increase of strength and stiffness in the steel moment-resisting frames. Hysteretic energy between strong-column and weak-beam design and drift control design with the same stiffness was not sensitive each other for these types of mid-rises of steel moment-resisting frames.

  • PDF

Mechanical performance of a new I-section weak-axis column bending connection

  • Lu, Linfeng;Xu, Yinglu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.31-44
    • /
    • 2018
  • This paper reports a novel steel beam-to-column connection suitable for use in the weak axis of I-section column. Monotonic and cyclic loading experimental investigations and numerical analysis of the proposed weak-axis connection were conducted, and the calculation procedure of the beam-column relative rotation angle and plastic rotation angle was developed and described in details. A comparative analysis of mechanical property and steel consumption were employed for the proposed I-section column weak-axis connection and box-section column bending connection. The result showed that no signs of fracturing were observed and the plastic hinge formed reliably in the beam section away from the skin plate under the beam end monotonic loading, and the plastic hinge formed much closer to the skin plate under the beam end cyclic loading. The fracture of welds between diaphragm and skin plate would cause an unstable hysteretic response under the column top horizontal cyclic loading. The proposed weak-axis connection system could not only simplify the design calculation progress when I-section column is adopted in frame structural design but also effectively satisfy the requirements of 'strong joint and weak member', as well as lower steel consumption.

Moment ratio considering composite beam action for steel special moment frames

  • Sang Whan Han;Soo Ik Cho;Taeo Kim;Kihak Lee
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.489-502
    • /
    • 2023
  • The strong column-weak beam (SCWB) moment ratio is specified in AISC 341 to prevent an abrupt column sway in steel special moment frames (SMFs) during earthquakes. Even when the SCWB requirement is satisfied for an SMF, a column-sway can develop in the SMF. This is because the contribution of the composite beam action developed in the concrete floor slab and its supporting beams was not included while calculating the SCWB moment ratio. In this study, we developed a new method for calculating the SCWB moment ratio that included the contribution of composite beam action. We evaluated the seismic collapse performance of the SMFs considering various risk categories and building heights. We demonstrated that the collapse performance of the SMFs was significantly improved by using the proposed SCWB equation that also satisfied the target performance specified in ASCE 7.

P-Δ 효과를 고려한 기둥항복형 강구조 골조의 안정성 (Stability of Steel Frames with Weak Column-Strong Beam Considering P-Δ effect)

  • 김희동;이명재
    • 한국강구조학회 논문집
    • /
    • 제15권4호통권65호
    • /
    • pp.457-466
    • /
    • 2003
  • 본 연구의 목적은 실험적 방법을 통하여 P-${\Delta}$ 효과를 고려한 기둥항복형 강구조 골조의 안정성을 고찰하는데 있다. 이를 위하여 3개의 1층 1스팬 기둥항복형 강구조 비가새 골조에 대한 가력실험을 실시하였다. 실험의 변수로는 기둥의 강성과 축력비를 적용하였다. 실험결과 기둥의 강성 감소는 P-${\Delta}$효과를 증가시켜 골조의 안정성에 큰 영향을 미치는 것으로 나타났으며, 특히 보항복형 골조와 비교하여 최대내력 도달 이후의 내력자하 현상이 다소 급격하게 나타났다. 이것은 기둥의 강성이 낮은 기둥항복형 골조의 경우 P-${\Delta}$효과의 영향이 골조의 안정성에 미치는 영향이 증가되어 나타난 현상으로 사료된다.

Global seismic performance of a new precast CFST column to RC beam braced frame: Shake table test and numerical study

  • Xu, S.Y.;Li, Z.L.;Liu, H.J.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.805-827
    • /
    • 2016
  • A new type of precast CFST column to RC beam braced frame is proposed in this paper. A series of shake table tests were conducted to excite a one-third scale six-story model for investigating the global seismic performance of this type of structure against earthquake actions. Particular emphasis was given to its dynamic property, global seismic responses and failure path. Correspondingly, a numerical model built on the basis of fiber-beam-element model, multi-layer shell model and element-deactivation method was developed to simulate the seismic performance of the prototype structure. Numerical results were compared with the measured values from shake table tests to verify the validity and reliability of the numerical model. The results demonstrated that the proposed novel precast CFST column to RC beam braced frame performs excellently under strong earthquake excitations; the "strong CFST column-weak RC beam" and "strong connection-weak member" anti-seismic design principles can be easily achieved; the maximum deflections of precast CFSTC-RCB braced frame satisfied the deflection limitations proposed in national code; the numerical model can properly simulate the dynamic property and responses of the precast CFSTC-RCB braced frame that are highly concerned in engineering practice.

Stress-strain model of weak PVC-FRP confined concrete column and strong RC ring beam joint under eccentric compression

  • Yu, Feng;Zhang, Nannan;Fang, Yuan;Liu, Jie;Xiang, Guosheng
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.13-27
    • /
    • 2020
  • To investigate the stress-strain relation of PVC-FRP Confined Concrete (PFCC) column with RC ring beam joint subjected to eccentric compression, the experiment of 13 joint specimens, which were designed with principle of "strong joint and weak column", were presented. Several variable parameters, such as reinforcement ratio, width and height of ring beam, FRP strips spacing and eccentricity, were considered. The specimens were eventually damaged by the crushing of concrete, the fracture of PVC tube and several FRP strips. With the FRP strips spacing or eccentricity increased, the ultimate carrying capacity of specimens declined. The strain of FRP strips and axial strain of PVC tube decreased as FRP strips spacing decreased. The decrease of eccentricity would slow down the development of strain of FRP strips and axial strain of PVC tube. The slope of stress-strain curve of PFCC column decreased as FRP strips spacing or eccentricity increased. The ultimate strain of PFCC column reduced as FRP strips spacing increased, while the effect of eccentricity on the ultimate strain of PFCC was not distinct. Considering the influence of eccentricity on the stress-strain relation, a modified stress-strain model for conveniently predicting the weak PFCC column and strong RC ring beam joint under eccentric compression was proposed and it was in good agreement with the experimental data.

프리캐스트 보-기둥 헤드철근 연결부 반복하중 실험 (Reversed Cyclic Loading Tests on Precast Beam-Column Joints with Headed Reinforcement)

  • 김인규;유승룡
    • 콘크리트학회논문집
    • /
    • 제15권3호
    • /
    • pp.369-376
    • /
    • 2003
  • 프리캐스트 보-기둥 연결부에는 기둥 주근과 보의 정착철근, 연결부를 위한 띠철근 등으로 매우 복잡한 배근상태로 철근 배근과 콘크리트의 타설 및 다짐이 용이하지 않다. 특히 보의 갈고리는 띠철근 또는 주근과의 마주침이 흔히 발생하는 철근으로, 외곽기둥의 경우 충분한 정착길이를 확보하기가 더욱 난해할 때가 있다. 본 연구에서는 헤드철근을 적용한 보-기둥 연결부를 위하여 두 개의 프리캐스트 기둥과 하나의 프리캐스트 보를 연결한 4개의 실험체를 제작하여, 보-기둥접합부와 기둥-기둥접합부에 대한 반복하중실험으로 강도와 그 이력거동을 평가하여 보았다. 실험 결과 강주 약보 실험체들은 갈고리철근과 유사한 거동을 보였다. 국내에서 주로 적용되는 스플라이스 기둥 접합은 강주 약보의 기둥에서는 충분한 내력을 발휘하였다.

H형강 기둥의 약축에 대한 기둥-보 접합상세 개발 및 내력평가 (Development and Strength Evaluation of Beam-to-Column Connection Details in Weak Axis of H-shape Column)

  • 김상섭;이도형;함정태;김규석
    • 한국강구조학회 논문집
    • /
    • 제16권1호통권68호
    • /
    • pp.169-180
    • /
    • 2004
  • 강구조 기둥-보 접합부에 대한 연구는 그동안 국내외에서 오랜 기간 연구가 진행되어 내진성능 및 집합부의 강도를 개선시킬 수 있는 많은 접합 디테일이 개발되어 사용 중에 있으나, 현재 국내에서는 시공성을 고려하여 기존의 브라켓 형식의 접합부를 선호하고 있다. 본 연구에서는 약축 접합부의 연성적인 거동을 확보하면서 시공이 편리한 기둥-보 접합부를 실험과 이론해석을 통해 개발함으로써 철골구조시스템이 중저층 건물에도 사용할 수 있도록 하는데 그 목적이 있다. 또한 약축에 대한 기둥-보 접합부의 구조설계 및 시공에 필요한 기초 자료를 제시하고자 한다.

고강도 콘크리트 보-기둥-슬래브 접합부의 반복하중 실험 (Experimental Study of High Strength Concrete Beam-Column-Slab Connections subjected to cyclic loading)

  • 오영훈;오정근;장극관;김윤일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.339-344
    • /
    • 1995
  • In the design of ductile moment-resisting frames (DMRFs) following the strong column-weak beam dsign philosophy, it is desirable that the joint and column remain essentially elastic in order to insure proper energy dissipation and lateral stability of the structure. The joint has been identified as the "weak link" in DMRFs because any stiffness or strength deterioration in this region can lead to substantial drifts and the possibility of collapse due to P-delta effects. Moreover, the engineer is faced with the difficult task of detailing an element whose size is determined by the framing members, but which must resist a set of loads very different from those used in the design of the beams and columns. Four 2/3-scale beam-column-slab joint assemblies were designed according to existing code requirements of ACI 318-89, representing interior joints of DMRFs with reinforced high strength concrete. The influence on aseismic behavior of beam-column joints due to monolithic slab, has been investigated.estigated.

  • PDF

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.