• Title/Summary/Keyword: weak acid

Search Result 465, Processing Time 0.03 seconds

Microwave-assisted Weak Acid Hydrolysis of Proteins

  • Seo, Mi-Yeong;Kim, Jin-Hee;Park, Se-Hwan;Lee, Ji-Hye;Kim, Tae-Hee;Lee, Ji-Hyeon;Kim, Jeong-Kwon
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.47-49
    • /
    • 2012
  • Myoglobin was hydrolyzed by microwave-assisted weak acid hydrolysis with 2% formic acid at $37^{\circ}C$, $50^{\circ}C$, and $100^{\circ}C$ for 1 h. The most effective hydrolysis was observed at $100^{\circ}C$. Hydrolysis products were investigated using matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Most cleavages predominantly occurred at the C-termini of aspartyl residues. For comparison, weak acid hydrolysis was also performed in boiling water for 20, 40, 60, and 120 min. A 60- min weak acid hydrolysis in boiling water yielded similar results as a 60-min microwave-assisted weak acid hydrolysis at $100^{\circ}C$. These results strongly suggest that microwave irradiation has no notable enhancement effect on acid hydrolysis of proteins and that temperature is the major factor that determines the effectiveness of weak acid hydrolysis.

The Investigation on Color Change of Dis-azo Acid Dye in Wool Dyeing (양모섬유의 염색시 디스아조계 산성염료의 변색현상 규명)

  • 김미경;김태경;윤석한;임용진
    • Textile Coloration and Finishing
    • /
    • v.15 no.2
    • /
    • pp.86-92
    • /
    • 2003
  • It is already known that the color of wool fabric dyed with disazo acid dyes could be changed in dyeing process and this is accelerated under alkaline condition. Focus was given to figuring out the mechanism of this color change, through the LC-MS analysis. In this study, no color change was seen in wool fabrics dyed with C. I. Acid Blue 113 under weak acidic, neutral and weak alkaline conditions for 1hour. However, the wool fabrics dyed under weak alkaline condition for a long time over 3 hours fumed reddish orange. When the wool fabrics dyed under weak acidic, neutral and weak alkaline conditions were treated with $0.5g/L\;Na_2C0_3$ solution, all of them turned reddish orange. On the other hand, the color of silk fabrics dyed with C. I. Acid Blue 113 were not changed after the same alkaline treatment. Wool contains cystine and cysteine, whereas silk does not. Due to the reversible reduction/oxidation process of cystine and cysteine in wool dyeing, the C. I. Acid Blue 113 of the dis-azo type is decomposed by reduction and consequently turned them into the reddish orange mono-azo types dye.

Investigating the Efficiency of Formic Acid and Hydrochloric Acid in Weak Acid Hydrolysis for Myoglobin

  • Jihyun Paek;Hyojin Hwang;Yeoseon Kim;Dabin Lee;Jeongkwon Kim
    • Mass Spectrometry Letters
    • /
    • v.14 no.2
    • /
    • pp.48-55
    • /
    • 2023
  • This study compares the efficiency of weak acid hydrolysis (WAH) using formic acid (FA) and hydrochloric acid (HCl) in the analysis of myoglobin peptides. WAH using 2% and 5% formic acid resulted in the identification of 32 peptides, with varying degrees of cleavage at the C-terminus of aspartic acid residues. HCl WAH with different concentrations demonstrated an increase in the total number of identified peptides but a decrease in fully cleaved peptides as the HCl concentration increased. Notably, deamidation was observed during HCl WAH but not in FA WAH. The addition of HCl WAH after FA WAH provided a similar pattern to HCl WAH, with slightly higher levels of hydrolysis. These findings highlight distinct cleavage patterns and deamidation effects between FA and HCl in the context of WAH.

Theoretical Studies for the Supercritical CO2 Solubility of Organophosphorous Molecules: Lewis Acid-Base Interactions and C-H···O Weak Hydrogen Bonding

  • Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2454-2458
    • /
    • 2007
  • Exploring the basic concepts for the design of CO2-philic molecules is important due to the possibility for “green” chemistry in supercritical CO2 as substitute solvent systems. The Lewis acid-base interactions and C?H…O weak hydrogen bonding were suggested as two key factors for the solubility of CO2-philic molecules. We have performed high level quantum mechanical calculations for the van der Waals complexes of CO2 with trimethylphosphate and trimethylphosphine oxide, which have long been used for metal extractants in supercritical CO2 fluid. Structures and energies were calculated using the MP2/6-31+G(d) and recently developed multilevel methods. These studies indicate that the Lewis acid-base interactions have larger impact on the stability of structure than the C?H…O weak hydrogen bonding. The weak hydrogen bonds in trimethylphosphine oxide have an important role to the large supercritical CO2 solubility when a metal is bound to the oxygen atom of the P=O group. Trimethylphosphate has many Lewis acid-base interaction sites so that it can be dissolved into supercritical CO2 easily even when it has metal ion on the oxygen atom of the P=O group, which is indispensable for a good extractant.

Studies on the Sanitary Scientific Utilization of Asphalt (II) Air Oxidation of Asphalt. (아스팔트의 위생학적 이용에 관한 연구(제 2보))

  • 우세홍;이성호;김선덕;주대수
    • Journal of Environmental Health Sciences
    • /
    • v.3 no.1
    • /
    • pp.53-56
    • /
    • 1976
  • The air oxidations of asphalt at temperatures ranging from 190$\circ$C to 270$\circ$C were studied for changes in physical properties, proportions and chemical characteristics of asphalt compositions, weak acid and very weak acid contents. The following results were obtained: 1) Oils and resins of asphalt components are oxidized to asphaltenes by blowing(Air oxidation) 2) At 270$\circ$C, asphaltenes begin to undergo a change into benzene insoluble after approximately 12 hours of air oxidation. 3) Weak acid increases at the oxidation temperature below 200$\circ$C. While very weak acid, presumably phenols, generally increases without regard to the blowing(Air oxidation) temperature.

  • PDF

Effect of Microwave Irradiation Time on Microwave-Assisted Weak Acid Protein Hydrolysis

  • Kim, Dahee;Joo, Minhee;Lee, Dabin;Nguyen, Huu-Quang;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.10 no.3
    • /
    • pp.79-83
    • /
    • 2019
  • Horse heart myoglobin (MYG) and bovine serum albumin (BSA) were hydrolyzed by microwave-assisted weak-acid hydrolysis for 10, 20, 30, 40, 50, and 60 min using 2% formic acid (FA) at $100^{\circ}C$. Generally, the number of identified peptides increased with increasing irradiation time, indicating that the duration of microwave irradiation is linked to the efficiency of hydrolysis. For MYG, irradiation for 60 min provided the highest number of identified peptides, the greatest sequence coverage values and the highest MASCOT score values among the investigated irradiation times. Irradiation of BSA for 50 min, however, yielded a greater number of peptides than irradiation for 60 min due to the generation of miscleaved peptides after microwave irradiation for 50 min.

Effects of Temperature and Acetonitrile on Microwave-Assisted Weak Acid Protein Hydrolysis

  • Nam, Mihyeon;Lee, Dabin;Kim, Yeoseon;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.46-50
    • /
    • 2018
  • The effects of temperature and acetonitrile (ACN) concentration on microwave-assisted weak-acid hydrolysis of proteins were investigated. Myoglobin was hydrolyzed for 1 h using 2% formic acid and a microwave with different concentrations of ACN (0, 5, and 10%) at various temperatures (50, 60, 70, 80, 90, and $100^{\circ}C$). The numbers of peptides identified with each concentration of ACN were the same for each temperature. The greatest number of peptides (18 total) was obtained with hydrolysis at $100^{\circ}C$, and 6 of these were a result of additional removal of aspartic acid at the C-terminus. Hydrolysis at $80^{\circ}C$ resulted in 13 peptides, of which only 1 was generated by the additional removal of aspartic acid, and 12 were observed with hydrolysis at $100^{\circ}C$. Our results demonstrate that microwave-assisted weak-acid hydrolysis of proteins can be performed successfully at $80^{\circ}C$, which could be beneficial for limiting side reactions and generating larger peptide sequences.

Production of Weak Acid by Anaerobic Fermentation of Soil and Antifungal Effect

  • Kim, Hong-Lim;Jung, Bong-Nam;Sohn, Bo-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.691-694
    • /
    • 2007
  • Acetic acid and butyric acid were produced by the anaerobic fermentation of soil mixed with wheat or rice bran. The concentration of acetic acid produced in the wheat and rice bran-treated soil was 31.2mM and 8mM, respectively, whereas the concentration of butyric acid in the wheat and rice bran-treated soil was 25.0mM and 8mM, respectively. The minimal fungicidal concentration (MFC) for all the fungal strains was 40-60mM acetic acid, 20-40mM butyric acid, and 40-60mM mixture of acetic acid: butyric acid (1:1, v/v). Consequently, the efficacy of mixing wheat-bran with soil to control soil diseases was demonstrated.

Rapid Measurement of $NH_3$ and Weak Acid Permeation Through Liposomes and Renal Proximal Tubule Membranes

  • Bae, Hae-Rahn;Suh, Duck-Joon;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.203-214
    • /
    • 1994
  • Using the methods of stopped-flow and epifluorescence microscopy with entrapped fluorophore, membrane permeability of $NH_3$ and weak acids in liposomes, renal brush border (BBMV) and basolateral membrane vesicles (BLMV), and primary culture cells from renal proximal tubule was measured. Permeability coefficient (cm/sec) of $NH_3$ was $(2.9{\times}10^{-2}$ in phosphatidylcholine liposome $25^{\circ}C)$, $5.9{\times}10^{-2}$ in renal proximal tubule cell $(37^{\circ}C)$, $4.0{\times}10^{-2}\;and\;2.4{\times}10^{-2}$ in BBMV and BLMV $(25^{\circ}C)$, respectively. Formic acid has the highest permeability coefficient among the weak acids tested, which was $4.9{\times}10^{-3}$ in liposome, $5.0{\times}10^{-3}$ in renal proximal tubule cell, $9.1{\times}10^{-3}$ in BBMV and $3.8{\times}10^{-3}$ in BLMV. There was a linear relationship between external concentration of nonionized formic acid and initial rate of flux of formic acid in liposome, and the slope coincided with the value of permeability coefficient of formic acid measured in pH 7.0. These results show that techniques of stopped-flow and epifluorescence microscopy with entrapped fluorophore provide the precise method of measurement of very rapid transport of nonelectrolytes through membranes with the advantages of instantaneous mixing effect, good resolution time and easy manipulation.

  • PDF