• Title/Summary/Keyword: waypoints

Search Result 69, Processing Time 0.023 seconds

Development of Patrol Robot using DGPS and Curb Detection (DGPS와 연석추출을 이용한 순찰용 로봇의 개발)

  • Kim, Seung-Hun;Kim, Moon-June;Kang, Sung-Chul;Hong, Suk-Kyo;Roh, Chi-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.140-146
    • /
    • 2007
  • This paper demonstrates the development of a mobile robot for patrol. We fuse differential GPS, angle sensor and odometry data using the framework of extended Kalman filter to localize a mobile robot in outdoor environments. An important feature of road environment is the existence of curbs. So, we also propose an algorithm to find out the position of curbs from laser range finder data using Hough transform. The mobile robot builds the map of the curbs of roads and the map is used fur tracking and localization. The patrol robot system consists of a mobile robot and a control station. The mobile robot sends the image data from a camera to the control station. The remote control station receives and displays the image data. Also, the patrol robot system can be used in two modes, teleoperated or autonomous. In teleoperated mode, the teleoperator commands the mobile robot based on the image data. On the other hand, in autonomous mode, the mobile robot has to autonomously track the predefined waypoints. So, we have designed a path tracking controller to track the path. We have been able to confirm that the proposed algorithms show proper performances in outdoor environment through experiments in the road.

Bezier Curve-Based Path Planning for Robust Waypoint Navigation of Unmanned Ground Vehicle (무인차량의 강인한 경유점 주행을 위한 베지어 곡선 기반 경로 계획)

  • Lee, Sang-Hoon;Chun, Chang-Mook;Kwon, Tae-Bum;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 2011
  • This paper presents a sensor fusion-based estimation of heading and a Bezier curve-based motion planning for unmanned ground vehicle. For the vehicle to drive itself autonomously and safely, it should estimate its pose with sufficient accuracy in reasonable processing time. The vehicle should also have a path planning algorithm that enables to adapt to various situations on the road, especially at intersections. First, we address a sensor fusion-based estimation of the heading of the vehicle. Based on extended Kalman filter, the algorithm estimates the heading using the GPS, IMU, and wheel encoders considering the reliability of each sensor measurement. Then, we propose a Bezier curve-based path planner that creates several number of path candidates which are described as Bezier curves with adaptive control points, and selects the best path among them that has the maximum probability of passing through waypoints or arriving at target points. Experiments under various outdoor conditions including at intersections, verify the reliability of our algorithm.

A Study on Collision Avoidance Algorithm Based on Obstacle Zone by Target (Obstacle Zone by Target 기반 선박 충돌회피 알고리즘 개발에 관한 연구)

  • Chan-Wook Lee;Sung-Wook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • In the 21st century, the rapid development of automation and artificial intelligence technologies is driving innovative changes in various industrial sectors. In the transportation industry, this is evident with the commercialization of autonomous vehicles. Moreover research into autonomous navigation technologies is actively underway in the aviation and maritime sectors. Consequently, for the practical implementation of autonomous ships, an effective collision avoidance algorithm has become a crucial element. Therefore, this study proposes a collision avoidance algorithm based on the Obstacle Zone by Target(OZT), which visually represents areas with a high likelihood of collisions with other ships or obstacles. The A-star algorithm was utilized to represent obstacles on a grid and assess collision risks. Subsequently, a collision avoidance algorithm was developed that performs fuzzy control based on calculated waypoints, allowing the vessel to return to its original course after avoiding the collision. Finally, the validity of the proposed algorithm was verified through collision avoidance simulations in various encounter scenarios.

Practical Path-planning Framework Considering Waypoint Visibility for Indoor Autonomous Navigation using Two-dimensional LiDAR Sensors (경유지의 가시성을 고려한 2차원 라이다 센서 기반의 실용적인 경로 계획 프레임워크)

  • Hyejeong Ryu
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.196-202
    • /
    • 2024
  • Path-planning, a critical component of mobile robot navigation, comprises both local and global planning. Previous studies primarily focused on enhancing the individual performance of these planners, avoiding obstacles, and computing an optimal global path from a starting position to a target position. In this study, we introduce a practical path-planning framework that employs a target planner to bridge the local and global planners; this enables mobile robots to navigate seamlessly and efficiently toward a global target position. The proposed target planner assesses the visibility of waypoints along the global path, and it selects a reachable navigation target, which can then be used to generate efficient control commands for the local planners. A visibility-based target planner can handle situations, wherein the current, target waypoint is occupied by unknown obstacles. Real-world experiments demonstrated that the proposed pathplanning framework with the visibility-based target planner allowed the robot to navigate to the final target position along a more efficient path than the framework without a target planner.

Development of a dry mock-up system for verifying pyroprocess automation

  • Seungnam Yu;Dongseok Ryu;Byugsuk Park;Jonghui Han
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1913-1924
    • /
    • 2024
  • This paper presents the design and operation of an autonomous robot for pyroprocess automation, which requires unique approaches beyond those used in industrial applications to achieve the desired performance. Maintaining an extremely dry atmosphere is crucial to handle various materials, including chloride, and an autonomous system ensures this dry environment. The drying room dehumidifier was carefully selected and designed to generate dry air, and different types of dry air conditioning performance were evaluated, including assessing worker accessibility inside the mock-up to determine the system's feasibility. Containers used for process materials were modified to fit the gripper system of the gantry robot for automation. The loading and unloading of process materials in each equipment were automatically performed to connect the process equipment with the robotic system. The gantry robot primarily operated through macro motion to approach waypoints containing process materials, eliminating the need for precise approach motion. The robot's tapered jaw design allowed it to grasp the target object even with imperfect positioning. Robot motions were programmed using a robot simulator for initial positioning and motion planning, and real accuracy was tested in a mock-up facility using the OPC platform.

Construction of experimental data to calculate the arrival time of the rescue ship (구조선의 도착시간 산출을 위한 실험 데이터 구축)

  • Jeong, Jae-Yong;Jung, Cho-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.111-117
    • /
    • 2017
  • The arrival time of rescue ships is very important in the event of distress. This paper presents the development of experimental data to calculate the arrival time of rescue ships. The ship's traffic probability distribution was used. Mokpo Port was selected as the area of study, and AIS data for a 1 year period were used. For the ship's traffic probability distribution, a gateline was established. The lateral range distribution was calculated and fitted to the normal distribution and two Gaussian mixture distributions (GMD2), and each parameter was extracted. After the locations of ${\mu}$, ${\mu}{\pm}1{\sigma}$ of the normal distribution and ${\mu}_1$ of the two Gaussian mixture distribution(GMD2) were set as waypoints, the location and probability were determined. A scenario was established in relation to each type of parameter. Thus, the arrival time can be calculated.

Path planning for autonomous lawn mower tractor

  • Song, Mingzhang;Kabir, Md. Shaha Nur;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.63-71
    • /
    • 2015
  • Path planning is an essential part for traveling and mowing of autonomous lawn mower tractors. Objectives of the paper were to analyze operation patterns by a skilled farmer, to extract and optimize waypoints, and to demonstrate generation of formatted planned path for autonomous lawn mower tractors. A 27-HP mower tractor was operated by a skilled farmer on grass fields. To measure tractor travel and operation characteristics, an RTK-GPS antenna with a 6-cm RMS error, an inertia motion sensing unit, a gyro compass, a wheel angle sensor, and a mower on/off sensor were mounted on the mower tractor, and all the data were collected at a 10-Hz rate. All the sensor data were transferred through a software program to show the status immediately on the notebook. Planned path was generated using the program parameter settings, mileage and time calculations, and the travel path was plotted using developed software. Based on the human operation patterns, path planning algorithm was suggested for autonomous mower tractor. Finally path generation was demonstrated in a formatted file and graphic display. After optimizing the path planning, a decrease in distance about 13% and saving of the working time about 30% was achieved. Field test data showed some overlap, especially in the turning areas. Results of the study would be useful to implement an autonomous mower tractor, but further research needs to improve the performance.

A Development of Simulation System for 3D Path Planning of UUV (무인잠수정의 3차원 경로계획을 위한 시뮬레이션 시스템 개발)

  • Shin, Seoung-Chul;Seon, Hwi-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.701-704
    • /
    • 2010
  • In studying an autonomous navigation technique of UUV(Unmaned Underwater Vehicle), one of the many fundamental techniques is to plan a 3D path to complete the mission via realtime information received by sonar showing landscapes and obstacles. The simulation system is necessary to verify the algorithm in researching and developing 3D path planning of UUV. It is because 3D path planning of UUV should consider guide control, the dynamics, ocean environment, and search sonar models on the basis of obstacle avoidance technique. The simulation system developed in this paper visualizes the UUV's movement of avoiding obstacles, arriving at the goal position via waypoints by using C++ and OpenGL. Plus, it enables the user to setup the various underwater environment and obstacles by a user interface. It also provides a generalization that can verify path planning algorithm of UUV studied in any developing environment.

  • PDF

Obstacle Avoidance for Unmanned Air Vehicles Using Monocular-SLAM with Chain-Based Path Planning in GPS Denied Environments

  • Bharadwaja, Yathirajam;Vaitheeswaran, S.M;Ananda, C.M
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • Detecting obstacles and generating a suitable path to avoid obstacles in real time is a prime mission requirement for UAVs. In areas, close to buildings and people, detecting obstacles in the path and estimating its own position (egomotion) in GPS degraded/denied environments are usually addressed with vision-based Simultaneous Localization and Mapping (SLAM) techniques. This presents possibilities and challenges for the feasible path generation with constraints of vehicle dynamics in the configuration space. In this paper, a near real-time feasible path is shown to be generated in the ORB-SLAM framework using a chain-based path planning approach in a force field with dynamic constraints on path length and minimum turn radius. The chain-based path plan approach generates a set of nodes which moves in a force field that permits modifications of path rapidly in real time as the reward function changes. This is different from the usual approach of generating potentials in the entire search space around UAV, instead a set of connected waypoints in a simulated chain. The popular ORB-SLAM, suited for real time approach is used for building the map of the environment and UAV position and the UAV path is then generated continuously in the shortest time to navigate to the goal position. The principal contribution are (a) Chain-based path planning approach with built in obstacle avoidance in conjunction with ORB-SLAM for the first time, (b) Generation of path with minimum overheads and (c) Implementation in near real time.

A Dynamic Route Search Algorithm for Time-Sensitive Air Cargo in Air Traffic Management (항공교통관리에서 시간에 민감한 항공운송을 위한 동적 항로탐색 알고리즘)

  • Cho, Tae-Hwan;Kim, Kang-Hee;Choi, Sang-Bang
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.744-751
    • /
    • 2012
  • Air Traffic Management(ATM) is to control air traffic flow quickly and safely. For efficient ATM, the ability which calculate optimal route using filight plan and filght information is required. Especially for the time-sensitive air cargo, it is essential. In this paper, therefore, we present a dynamic route search algorithm which calculate optimal route dynamically. The conventional method using Dijkstra algorithm has a problem that recalculate the entire route when some airways are closed. However, the proposed algorithm recalculates only affected waypoints, so it finds optimal route quickly and accurately. Comparisons with the conventional method and the proposed algorithm show that the proposed algorithm provides better.