• Title/Summary/Keyword: waves impacts

Search Result 63, Processing Time 0.025 seconds

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

Estimating milk production losses by heat stress and its impacts on greenhouse gas emissions in Korean dairy farms

  • Geun-woo, Park;Mohammad, Ataallahi;Seon Yong, Ham;Se Jong, Oh;Ki-Youn, Kim;Kyu-Hyun, Park
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.770-781
    • /
    • 2022
  • Meteorological disasters caused by climate change like heat, cold waves, and unusually long rainy seasons affect the milk productivity of cows. Studies have been conducted on how milk productivity and milk compositions change due to heat stress (HS). However, the estimation of losses in milk production due to HS and hereby environmental impacts of greenhouse gas (GHG) emissions are yet to be evaluated in Korean dairy farms. Dairy milk production and milk compositions data from March to October 2018, provided by the Korea Dairy Committee (KDC), were used to compare regional milk production with the temperature-humidity index (THI). Raw data for the daily temperature and relative humidity in 2018 were obtained from the Korea Meteorological Administration (KMA). This data was used to calculate the THI and the difference between the maximum and minimum temperature changing rate, as the average daily temperature range, to show the extent to which the temperature gap can affect milk productivity. The amount of milk was calculated based on the price of 926 won/kg from KDC. The results showed that the average milk production rate was the highest within the THI range 60-73 in three regions in May: Chulwon (northern region), Hwasung (central region), and Gunwi (southern region). The average milk production decreased by 4.96 ± 1.48% in northern region, 7.12 ± 2.36% in central region, and 7.94 ± 2.57% in southern region from June to August, which had a THI range of 73 or more, when compared to May. Based on the results, the level of THI should be maintained like May. If so, the farmers can earn a profit of 9,128,730 won/farm in northern region, 9,967,880 won/farm in central region, and 12,245,300 won/farm in southern region. Additionally, the average number of cows raised can be reduced by 2.41 ± 0.35 heads/farm, thereby reducing GHG emissions by 29.61 ± 4.36 kg CO2eq/day on average. Overall, the conclusion suggests that maintaining environmental conditions in the summer that are similar to those in May is necessary. This knowledge can be used for basic research to persuade farmers to change farm facilities to increase the economic benefits and improve animal welfare.

The Analysis of planning methode and case study for Model 'Climate Change Adaptation City' (기후변화 적응도시 모델개발을 위한 계획기법 및 사례 분석)

  • Kim, Jongkon
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The Earth's surface temperature still continues to rise, and extreme weather phenomena such as heat waves, drought, and precipitation have been repeated every year. It is reported that international communities attribute the main cause of the Earth's surface temperature rise to the excessive use of the fossil energy. Recently, the damage caused by climate change is getting worse, and the place where we live is suffering the most. Cities have been continuously growing not only meeting the basic functions of human habitation, work and leisure but also being places for various economic and social activities. But Cities, the victims of climate change, have grown only considering human needs and convenience rather than predicting their physical and ecological systems(Albedo effects, urban microclimate, resources and energy of the circulatory system, etc). In other words, the cities offer the cause of the problems of climate change, and even worsen the extreme weather phenomena without coping with them. Therefore, it is urgent priorities to protect the climate, to prevent the causes of the extreme weather phenomena and to enhance the adaptive capacity for the worse weather events. This study is to derive the concept for adapting to these climate changes which can make cities escape from exposure to these climate change impacts and make themselves safer places to live. And it analyzes some European cities and present developing models to implement planning methods. In this study, the concept of the climate adaptive cities will be suggested to prepare the adaptation measures for urban planners, and climate change adaptation models will be presented by analyzing some preliminary cases.

Elastic Wave Velocity of Jumunjin Sand Influenced by Saturation, Void Ratio and Stress (포화도, 간극비 및 응력에 따른 주문진사의 탄성파 속도)

  • Lee, Jung-Hwoon;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The penetration testing provides 1 dimensional profiles of properties applicable to limited investigation areas, although N-value has been linked to a wide range of geotechnical design parameters based on empirical correlations. The nondestructive test using elastic waves is able to produce 2 or 3 dimensional property maps by inversion process with high efficiency in time and cost. As both N-value and elastic wave velocities share common dominant factors that include void ratio, degree of saturation, and in-situ effective stress, the correlation between the two properties has been empirically proposed by previous studies to assess engineering properties. This study presents the experimentally measured elastic wave velocities of Jumunjin sands under at-rest lateral displacement condition with varying the initial void ratio and degree of saturation. Results show that the stress condition predominantly influences the wave velocities whereas void ratio and saturation determine the stress-velocity tendency. The correlation among the dominant factors is proposed by multiple regression analysis with the discussion of relative impacts on parameters.

The Climate Change and Zoonosis (Zoonotic Disease Prevention and Control) (기후변화와 인수공통전염병 관리)

  • Jung, Suk-Chan
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.228-239
    • /
    • 2009
  • The observations on climate change show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. The effects of climate change are likely to include more variable weather, heat waves, increased mean temperature, rains, flooding and droughts. The threat of climate change and global warming on human and animal health is now recognized as a global issue. This presentation is described an overview of the latest scientific knowledge on the impact of climate change on zoonotic diseases. Climate strongly affects agriculture and livestock production and influences animal diseases, vectors and pathogens, and their habitat. Global warming are likely to change the temporal and geographical distribution of infectious diseases, including those that are vector-borne such as West Nile fever, Rift Valley fever, Japanese encephalitis, bluetongue, malaria and visceral leishmaniasis, and other diarrheal diseases. The distribution and prevalence of vector-borne diseases may be the most significant effect of climate change. The impact of climate change on the emergence and re-emergence of animal diseases has been confirmed by a majority of countries. Emerging zoonotic diseases are increasingly recognized as a global and regional issue with potential serious human health and economic impacts and their current upward trends are likely to continue. Coordinated international responses are therefore essential across veterinary and human health sectors, regions and countries to control and prevent emerging zoonoses. A new early warning and alert systems is developing and introducing for enhancing surveillance and response to zoonotic diseases. And international networks that include public health, research, medical and veterinary laboratories working with zoonotic pathogens should be established and strengthened. Facing this challenging future, the long-term strategies for zoonotic diseases that may be affected by climate change is need for better prevention and control measures in susceptible livestock, wildlife and vectors in Korea. In conclusion, strengthening global, regional and national early warning systems is extremely important, as are coordinated research programmes and subsequent prevention and control measures, and need for the global surveillance network essential for early detection of zoonotic diseases.

  • PDF

Strain-dependent dynamic properties of cemented Busan clay (부산 고결점토의 변형률 의존적 동적거동특성에 관한 연구)

  • Kim, Ah-Ram;Chang, Il-Han;Cho, Gye-Chun;Shim, Sung-Hyun;Kang, Yeoun-Ike
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.61-67
    • /
    • 2010
  • Thick soft clay deposits which are generally located at the west and south coast of the Korean peninsula have complicated characteristics according to their orientation and formation history. Thus, several geotechnical problems could possibly occur when those soft clay deposits are used as foundations for marine structures. Deep cement mixing (DCM) method is one of the most widely used soft soil improvement method for various marine structures, nowadays. DCM method injects binders such as cement into the soft ground directly and mixes with the in-situ soil to improve the strength and other geotechnical properties sufficiently. However, the natural impacts induced by dynamic motions such as ocean waves, wind, typhoon, and tusnami give significant influences on the stability of marine structures and their underlaying foundations. Thus, the dynamic properties become important design criteria to insure the seismic stability of marine structures. In this study, the dynamic behavior of cemented Busan clay is evaluated. Laboratory unconfined compression test and resonant column test are performed on natural in-situ soil and cement mixed specimens to confirm the strength and strain-dependent dynamic behavior variation induced by cement mixing treatment. Results show that the unconfined compressive strength and shear modulus increase with curing time and cement content increment. Finally, the optimized cement mixing ratio for sufficient dynamic stability is obtained through this study. The results of this study are expected to be widely used to improve the reliability of seismic design for marine structures.

  • PDF

Remote Sensing and GIS for Earth & Environmental disasters: The Current and Future in Monitoring, Assessment, and Management (원격탐사와 GIS를 이용한 지구환경재해 관측과 관리 기술 현황)

  • Yang, Minjune;Kim, Jae-Jin;Han, Kyung-soo;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1785-1791
    • /
    • 2021
  • Natural and environmental disasters are recently increasing in frequency and complexity worldwide due to the rapid expansion of overpopulation, industrialization, and urbanization. Thus, analyzing past critical events/disasters in deep and preparing for future disasters in terms of risk identification, assessment and management are imperative requirements. In this special issue, we introduce several interesting studies covering disaster risk management and observation technologies for the heat waves, particulate matters, floods, drought, and earthquake using remote sensing and GIS performed by i-SEED (School of Integrated Science for Sustainable Earth & Environmental Disaster at Pukyong National University). We expect that the results of this special issue provide comprehensive information on the risk management and damage prevention of natural and environmental disasters and offer guidance on the application to future disasters to reduce their risks and impacts.

COVID-19 and IT Service: Challenges and Responses (COVID-19와 IT 서비스: 변화와 대응)

  • Lee, Jungwoo;Kang, Ju Young;Lee, Sang Kon
    • Journal of Information Technology Services
    • /
    • v.20 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • Since the first confirmed case in January 2020, Coronavirus disease 2019(COVID-19) has brought many changes to our society, and Korea is no exception. Some changes are direct and immediate such as restrictions on overseas travel and social distancing, but the others are indirect and slowly adapted such as lifestyle changes impacting industries and businesses. IT service sector is tremendously influenced by COVID-19. IT service is used extensively in response to COVID-19 taking advantage of its non-face-to-face characteristics. In that sense, the industry is positively affected and in some sense invigorated, giving birth to new kind of services. This special issue focuses on introducing how the IT services are affected, what kind of transformations are undergoing, and how these are expedited after COVID-19. This special issue expands and extends the case research section by collecting new IT service case studies concerning these topics. After competitive review process, 11 studies are selected for this special issue which deals with four different but closely related aspects: (1) evolutions of private IT services, (2) transformations in public IT services, (3) impacts in the hospitality and tourism industry, and (4) changes of people's behavior along with COVID-19. The first set reports on the evolution of private IT services that have created terms such as foodtech and edutech as we enter a rapid non-face-to-face situation. The second set consists of studies dealing with the evolution of public IT services. Evolution and rapid response to non-face-to-face appear to be no exception in the public sector. The third includes studies of hospitality and tourism which is most strongly affected by COVID-19. The last set deals with the behavioral changes of users such as technostress in telecommuting. Lessons learned through best practices and key problems identified in these studies may help us to actively respond to the coming waves of changes incurred by COVID-19 in our society as well as in the IT service industry.

High Temperatures and Kidney Disease Morbidity: A Systematic Review and Meta-analysis

  • Lee, Woo-Seok;Kim, Woo-Sung;Lim, Youn-Hee;Hong, Yun-Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Objectives: In recent years, serious concerns have been raised regarding the impacts of rising temperatures on health. The present study was conducted to investigate the relationship between elevated temperatures and kidney disease through a systematic review and meta-analysis. Methods: In October 2017, 2 researchers independently searched related studies in PubMed and Embase. A meta-analysis was conducted using a random-effects model, including only studies that presented odds ratios, relative risks, or percentage changes, along with 95% confidence intervals (CIs). The characteristics of each study were summarized, and the Egger test and funnel plots were used to evaluate publication bias. Results: Eleven studies that met the criteria were included in the final analysis. The pooled results suggest an increase of 30% (95% CI, 20 to 40) in kidney disease morbidity with high temperatures. In a disease-specific subgroup analysis, statistically significant results were observed for both renal colic or kidney stones and other renal diseases. In a study design-specific subgroup analysis, statistically significant results were observed in both time-series analyses and studies with other designs. In a temperature measure-specific subgroup analysis, significant results were likewise found for both studies using mean temperature measurements and studies measuring heat waves or heat stress. Conclusions: Our results indicate that morbidity due to kidney disease increases at high temperatures. We also found significant results in subgroup analyses. However, further time-series analyses are needed to obtain more generalizable evidence.

African swine fever: Etiology, epidemiological status in Korea, and perspective on control

  • Yoo, Dongwan;Kim, Hyunil;Lee, Joo Young;Yoo, Han Sang
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.38.1-38.24
    • /
    • 2020
  • African swine fever (ASF), caused by the ASF virus, a member of the Asfarviridae family, is one of the most important diseases in the swine industry due to its clinical and economic impacts. Since the first report of ASF a century ago, ample information has become available, but prevention and treatment measures are still inadequate. Two waves of epizootic outbreaks have occurred worldwide. While the first wave of the epizootic outbreak was controlled in most of the infected areas, the second wave is currently active in the European and Asian continents, causing severe economic losses to the pig industry. There are different patterns of spreading in the outbreaks between those in European and Asian countries. Prevention and control of ASF are very difficult due to the lack of available vaccines and effective therapeutic measures. However, recent outbreaks in South Korea have been successfully controlled on swine farms, although feral pigs are periodically being found to be positive for the ASF virus. Therefore, we would like to share our story regarding the preparation and application of control measures. The success in controlling ASF on farms in South Korea is largely due to the awareness and education of swine farmers and practitioners, the early detection of infected animals, the implementation of strict control policies by the government, and widespread sharing of information among stakeholders. Based on the experience gained from the outbreaks in South Korea, this review describes the current understanding of the ASF virus and its pathogenic mechanisms, epidemiology, and control.