• 제목/요약/키워드: wavenumber domain

검색결과 47건 처리시간 0.024초

공간 상에 원하는 음장형상을 만드는 방법 (How to make spatially focused sound shape: wavenumber spectrum matching)

  • 박진영;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1014-1017
    • /
    • 2007
  • Sound focusing technologies has been studied for various purposes from early 1990s. As a result, these technologies make us possible to apply in many uses. For example, we can treat tumors using focused ultrasonic waves without surgical knife and communicate in the ocean using time reversal array. Also applications for personal audio system become issues. Recently, as technologies are developing, in some applications, needs for regional focusing become increasing because previously suggested focusing methods, such as phase conjugation, time reversal and inverse filtering, were all about a point focusing. Therefore, studies on regional focusing method are essentially needed. Regional focusing method was firstly mentioned by Choi and Kim in 2002: acoustic contrast control. However, in regional focusing, physical interpretations between control variables and results are still not easy because of its complexity. In this regard, we tried to understand the relations between control variables and results in wavenumber domain and suggested a solution method for regional focusing: wavenumber spectrum matching. We also showed how to make spatially focused sound shape using the suggested method from the simplest case: line focusing.

  • PDF

지면 임피던스를 고려한 레일 방사 소음의 파수영역 유한요소/경계요소 해석 (Numerical Analysis of Rail Noise Regarding Surface Impedance of Ground by Using Wavenumber Domain Finite and Boundary Elements)

  • 유정수;장승호
    • 한국철도학회논문집
    • /
    • 제18권4호
    • /
    • pp.289-300
    • /
    • 2015
  • 철도 전동 소음은 철도에서 발생하는 대표적인 소음으로서 차륜과 레일의 음향 조도에 의해 가진 된 차륜 및 레일의 진동으로부터 발생한다. 철도 전동 소음 해석 시 레일 방사 소음은 자유 공간에 놓인 레일의 음향 방사 파워를 이용해 원거리에서 계산하므로, 일반적으로 소음원 모델에 지면 반사를 고려하지 않는다. 그러나 레일 주위의 근접 음장을 해석하고 저감 대책을 적용하기 위해서는 지면에 의한 음파의 반사를 고려해야 한다. 본 논문에서는 파수유한요소/경계요소법을 이용해 지면에 의해 발생하는 레일 소음의 변화와 그 특성을 살펴보았다. 해석은 먼저 레일이 강체 지면에 부착된 경우와 레일 패드 높이만큼 강체 지면에서 이격된 경우에 대해 방사효율을 구하고 그 결과를 비교하였다. 이를 통해 레일과 강체 지면의 이격 여부에 따라 레일 방사 소음에 크게 변화함을 확인하였다. 둘째로는 지면에 임피던스 경계조건을 부여하고 레일에서 방사되는 음향 파워 및 지향 특성의 변화를 살펴보았다.

Normal Mode Approach to the Stability Analysis of Rossby-Haurwitz Wave

  • Jeong, Hanbyeol;Cheong, Hyeong Bin
    • 한국지구과학회지
    • /
    • 제38권3호
    • /
    • pp.173-181
    • /
    • 2017
  • The stability of the steady Rossby-Haurwitz wave (R-H wave) in the nondivergent barotropic model (NBM) on the sphere was investigated with the normal mode method. The linearized NBM equation with respect to the R-H wave was formulated into the eigenvalue-eigenvector problem consisting of the huge sparse matrix by expanding the variables with the spherical harmonic functions. It was shown that the definite threshold R-H wave amplitude for instability could be obtained by the normal mode method. It was revealed that some unstable modes were stationary, which tend to amplify without the time change of the spatial structure. The maximum growth rate of the most unstable mode turned out to be in almost linear proportion to the R-H wave amplitude. As a whole, the growth rate of the unstable mode was found to increase with the zonal- and total-wavenumber. The most unstable mode turned out to consist of more-than-one zonal wavenumber, and in some cases, the mode exhibited a discontinuity over the local domain of weak or vanishing flow. The normal mode method developed here could be readily extended to the basic state comprised of multiple zonalwavenumber components as far as the same total wavenumber is given.

다수의 음원을 사용한 공간의 소리 제어 방법론 (Spatial Manipulation of Sound Using Multiple Sources)

  • 최정우;김양한;박영진
    • 한국소음진동공학회논문집
    • /
    • 제15권12호
    • /
    • pp.1378-1388
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments. the quality of sound can not be manifested over every Position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line

  • Yang, Xiongjun;Lei, Ying;Liu, Lijun;Huang, Jinshan
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.425-434
    • /
    • 2020
  • Practical non-synoptic fluctuating wind often exhibits nonstationary features and should be modeled as nonstationary random processes. Generally, the coherence function of the fluctuating wind field has time-varying characteristics. Some studies have shown that there is a big difference between the fluctuating wind field of the coherent function model with and without time variability. Therefore, it is of significance to simulate nonstationary fluctuating wind field with time-varying coherent function. However, current studies on the numerical simulation of nonstationary fluctuating wind field with time-varying coherence are very limited, and the proposed approaches are usually based on the traditional spectral representation method with low simulation efficiency. Especially, for the simulation of multi-variable wind field of large span structures such as transmission tower-line, not only the simulation is inefficient but also the matrix decomposition may have singularity problem. In this paper, it is proposed to conduct the numerical simulation of nonstationary fluctuating wind field in one-spatial dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation efficiency. Finally, the proposed method is applied to simulate the longitudinal nonstationary fluctuating wind velocity field along the transmission line to illustrate its performances.

Ultrahigh-Resolution Spectral Domain Optical Coherence Tomography Based on a Linear-Wavenumber Spectrometer

  • Lee, Sang-Won;Kang, Heesung;Park, Joo Hyun;Lee, Tae Geol;Lee, Eun Seong;Lee, Jae Yong
    • Journal of the Optical Society of Korea
    • /
    • 제19권1호
    • /
    • pp.55-62
    • /
    • 2015
  • In this study we demonstrate ultrahigh-resolution spectral domain optical coherence tomography (UHR SD-OCT) with a linear-wavenumber (k) spectrometer, to accelerate signal processing and to display two-dimensional (2-D) images in real time. First, we performed a numerical simulation to find the optimal parameters for the linear-k spectrometer to achieve ultrahigh axial resolution, such as the number of grooves in a grating, the material for a dispersive prism, and the rotational angle between the grating and the dispersive prism. We found that a grating with 1200 grooves and an F2 equilateral prism at a rotational angle of $26.07^{\circ}$, in combination with a lens of focal length 85.1 mm, are suitable for UHR SD-OCT with the imaging depth range (limited by spectrometer resolution) set at 2.0 mm. As guided by the simulation results, we constructed the linear-k spectrometer needed to implement a UHR SD-OCT. The actual imaging depth range was measured to be approximately 2.1 mm, and axial resolution of $3.8{\mu}m$ in air was achieved, corresponding to $2.8{\mu}m$ in tissue (n = 1.35). The sensitivity was -91 dB with -10 dB roll-off at 1.5 mm depth. We demonstrated a 128.2 fps acquisition rate for OCT images with 800 lines/frame, by taking advantage of NVIDIA's compute unified device architecture (CUDA) technology, which allowed for real-time signal processing compatible with the speed of the spectrometer's data acquisition.

전기비저항탐사 2차원 모델링에서 송수신 간격을 고려한 푸리에 역변환 (Evaluation of Inverse Fourier Integral Considering the Distances from the Source Point in 2D Resistivity Modeling)

  • 조인기;정다빈
    • 지구물리와물리탐사
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2018
  • 전기탐사 2차원 모델링에서는 다수의 파수영역 전위를 계산하고 이를 푸리에 역변환하여 공간영역 전위를 계산한다. 푸리에 역변환은 여러 개의 서로 다른 파수에서의 파수영역 전위를 사용하여 수치적으로 얻어진다. 적분의 정확도를 향상시키기 위하여 파수의 크기에 따라 적분 구간을 지수 근사와 대수 근사 구간으로 분할하는 방법이 널리 사용되고 있다. 푸리에 역변환에는 크게 구간 적분법과 가우스 적분법이 사용되고 있다. 그러나 이들 방법은 송수신 간격을 고려하지 못하므로 송수신 간격에 따른 오차를 피할 수 없다. 특히 송수신 간격이 매우 작거나 클 경우 오차가 급격하게 증가하는 문제점을 가지고 있다. 이 연구에서는 송수신 간격을 고려하여 가우스 좌표값 및 가중값을 적용하는 새로운 수치 적분법을 개발하였다. 반무한 공간에 대한 수치 실험 결과, 개발된 수치 적분법은 송수신 간격에 관계없이 0.4% 이하의 정밀도를 나타내었다.

Seismic waveform tomography in the frequency-space domain: selection of the optimal temporal frequency for inversion

  • Yokota Toshiyuki;Matsushima Jun
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.19-24
    • /
    • 2004
  • Frequency-space domain full-wave tomography is a promising technique for delineating detailed subsurface structure with high resolution. However, this method requires criteria for the selection of a set of optimal temporal frequency components, to achieve stability in the sequence of inversion processes together with computational efficiency. We propose a method of selecting optimal temporal frequencies, based on wavenumber continuity. The proposed method is tested numerically and is shown to be able to select an optimal set of frequency components that are sufficient to image the anomalies.

비탄성 매질의 진폭 감쇠 효과를 첨가한 일반화된 주파수-파수 구조보정 (Generalized Frequency-wavenumber Migration Implemented by the Intrinsic Attenuation Effect)

  • 박창업;심재헌
    • 한국석유지질학회지
    • /
    • 제1권1호
    • /
    • pp.47-52
    • /
    • 1993
  • 지진파의 전파속도와 감쇠정도가 불균질한 매질에서 2차원 지진파 단면자료에 대한 주파수-파수 영역에서의 구조보정 방법 및 그 결과를 제시한다. 파동전파의 감쇠효과를 포함시키기 위해 일반화된 주파수-파수 구조보정 방법을 개선하여 파동장의 상향 및 하향 외삽연산자에 복소수 전파속도를 사용한다. 이 복소수 전파속도의 허수 부분은 지진파 감쇠 척도인 Q 값을 포함하도록 한다. 불균질한 전파속도와 비탄성을 가진 매질 속에서의 전파방정식의 해를 얻기 위해, 불균질한 매질자체를 일정한 전파속도와 비탄성을 갖는 평균적 매질과 가상적 파동원의 불균질한 분포로 규합된 등가의 시스템으로 취급한다. 가상적 파동원은 전파속도와 매질비탄성의 불균질 정도에 따라 그 세기가 좌우된다. 이 방법에 의해 수 개의 구조 모델에 대해 수치적으로 계산된 결과는 기존의 일반화된 파수-주파수 구조 보정 방법에 의한 것보다 더욱 선명한 단면 영상을 보여주며 파의 비탄성에 의해 불명확하게된 영상신호가 복원된다. 이 방법은 석유나 천연가스가 부존된 구조 또는 파쇄대가 존재하는 지역에서 획득된 자료를 구조보정하는데 유용하게 쓰일 것이다.

  • PDF

Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

  • Cheong, Hyeong-Bin;Kong, Hae-Jin
    • 한국지구과학회지
    • /
    • 제34권5호
    • /
    • pp.393-401
    • /
    • 2013
  • Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell's center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.