• Title/Summary/Keyword: wavelet spectrum

Search Result 145, Processing Time 0.025 seconds

A New Watermarking Algorithm Using the Edge and PN Code (에지와 대역확산기술을 이용한 디지털 워터마킹 기법)

  • Song Sang-Ju;Lee Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.13-18
    • /
    • 2004
  • In this paper, we proposed a new digital watermarking technique. It uses frequency domain of discrete wavelet transform(DWT). watermarking technique is one of the most important tools for DRM(Digital Right Management) We proposed a new algorithm watermark insertion and detection. This technique cleats the watermark sequence using the edge image, spread spectrum technique and DWT. We tested the technique with various attacks. and found that it satisfies the watermarking evaluation criteria. Cox similarity measurement value is more than 6 on the Lena image and PSNR is more than 40dB on JPEG, Collusion. Clopping and Scatting. By the result, we proved that the new technique satisfies the requirement of Digital contents distribution, which are undeletablility tenacity, statistical undetectablility.

  • PDF

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

Sparsification of Digital Images Using Discrete Rajan Transform

  • Mallikarjuna, Kethepalli;Prasad, Kodati Satya;Subramanyam, M.V.
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.754-764
    • /
    • 2016
  • The exhaustive list of sparsification methods for a digital image suffers from achieving an adequate number of zero and near-zero coefficients. The method proposed in this paper, which is known as the Discrete Rajan Transform Sparsification, overcomes this inadequacy. An attempt has been made to compare the simulation results for benchmark images by various popular, existing techniques and analyzing from different aspects. With the help of Discrete Rajan Transform algorithm, both lossless and lossy sparse representations are obtained. We divided an image into $8{\times}8-sized$ blocks and applied the Discrete Rajan Transform algorithm to it to get a more sparsified spectrum. The image was reconstructed from the transformed output of the Discrete Rajan Transform algorithm with an acceptable peak signal-to-noise ratio. The performance of the Discrete Rajan Transform in providing sparsity was compared with the results provided by the Discrete Fourier Transform, Discrete Cosine Transform, and the Discrete Wavelet Transform by means of the Degree of Sparsity. The simulation results proved that the Discrete Rajan Transform provides better sparsification when compared to other methods.

A Study on the Design of Low Back Muscle Evaluation System Using Surface EMG (표면근전도를 이용한 허리근육 평가시스템의 설계에 관한 연구)

  • Lee Tae-Woo;Ko Do-Young;Jung Chul-Ki;Kim In-Soo;Kang Won-Hee;Lee Ho-Yong;Kim Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.338-347
    • /
    • 2005
  • A computer-based low back muscle evaluation system was designed to simultaneously acquire, process, display, quantify, and correlate electromyographic(EMG) activity with muscle force, and range of motion(ROM) in the lumbar muscle of human. This integrated multi-channel system was designed around notebook PC. Each channel consisted of a time and frequency domain block, and T-F(time-frequency) domain block. The captured data in each channel was used to display and Quantify : raw EMG, histogram, zero crossing, turn, RMS(root mean square), variance, mean, power spectrum, median frequency, mean frequency, wavelet transform, Wigner-Ville distribution, Choi-Williams distribution, and Cohen-Posch distribution. To evaluate the performance of the designed system, the static and dynamic contraction experiments from lumbar(waist) level of human were done. The experiment performed in five subjects, and various parameters were tested and compared. This system could equally well be modified to allow acquisition, processing, and analysis of EMG signals in other studies and applications.

Arc Detection using Logistic Regression (로지스틱 회기를 이용한 아크 검출)

  • Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.566-574
    • /
    • 2021
  • The arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet and statistical features have been used, arc detection performance is degraded due to diverse arc waveforms. On the contray, Deep neural network (DNN) direcly utilizes raw data without feature extraction, based on end-to-end learning. However, a disadvantage of the DNN is processing complexity, posing the difficulty of being migrated into a termnial device. To solve this, this paper proposes an arc detection method using a logistic regression that is one of simple machine learning methods.

Assessment of New High-resolution Regional Climatology in the East/Japan Sea

  • Lee, Jae-Ho;Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.401-411
    • /
    • 2021
  • This study provides comprehensive assessment results for the most recent high-resolution regional climatology in the East/Japan Sea by comparing with the various existing climatologies. This new high-resolution climatology is generated based on the Optimal Interpolation (OI) method with individual profiles from the World Ocean Database and gridded World Ocean Atlas provided by the National Centers for Environmental Information (NCEI). It was generated from the recent previous study which had a primary focus to solve the abnormal horizontal gradient problem appearing in the other high-resolution climatology version of NCEI. This study showed that this new OI field simulates well the meso-scale features including closed-curve temperature spatial distribution associated with eddy formation. Quantitative spatial variability was compared to the other four different climatologies and significant variability at 160 km was presented through a wavelet spectrum analysis. In addition, the general improvement of the new OI field except for warm bias in the coastal area was confirmed from the comparison with serial observation data provided by the National Fisheries Research and Development Institute's Korean Oceanic Data Center.

Impact location on a stiffened composite panel using improved linear array

  • Zhong, Yongteng;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.173-182
    • /
    • 2019
  • Due to the degradation of beamforming properties at angles close to $0^{\circ}$ to $180^{\circ}$, linear array does not have a complete $180^{\circ}$ inspection range but a smaller one. This paper develops a improved sensor array with two additional sensors above and below the linear sensor array, and presents time difference and two dimensional multiple signal classification (2D-MUSIC) based impact localization for omni-directional localization on composite structures. Firstly, the arrival times of impact signal observed by two additional sensors are determined using the wavelet transform and compared, and the direction range of impact source can be decided in general, $0^{\circ}$ to $180^{\circ}$ or $180^{\circ}$ to $360^{\circ}$. And then, 2D-MUSIC based spatial spectrum formula using uniform linear array is applied for locate accurate position of impact source. When the arrival time of impact signal observed by two additional sensors is equal, the direction of impact source can be located at $0^{\circ}$ or $180^{\circ}$ by comparing the first and last sensor of linear array. And then the distance is estimated by time difference algorithm. To verify the proposed approach, it is applied to a quasi-isotropic epoxy laminate plate and a stiffened composite panel. The results are in good agreement with the actual impact occurring position.

Evaluation of the Relationship Between Possible Earthquake Time History Shape Occurring in a Target Fault Using Pseudo-Basis Function (유사기저함수를 사용한 대상 단층에서 발생 가능 지진파 형태 사이의 관계 표현 방법 개발 및 포항 단층과 경주 단층 발생 지진에의 적용)

  • Park, Hyung Choon;Oh, Hyun Ju
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-145
    • /
    • 2023
  • It is essential to determine a proper earthquake time history as a seismic load in a seismic design for a critical structure. In the code, a seismic load should satisfy a design response spectrum and include the characteristic of a target fault. The characteristic of a fault can be represented by a definition of a type of possible earthquake time history shape that occurred in a target fault. In this paper, the pseudo-basis function is proposed to be used to construct a specific type of earthquake, including the characteristic of a target fault. The pseudo-basis function is derived from analyzing the earthquake time history of specific fault harmonic wavelet transform. To show the feasibility of this method, the proposed method was applied to the faults causing the Gyeong-Ju ML5.8 and Pohang ML5.3 earthquakes.

Sea Level Variability at a Synoptic Band along the East Coast of Korea and its Causal Mechanism (한국 동해연안의 종관주기 해수면 변동 특성과 발생원인)

  • Jung, Sung-Yun;Yun, Jae-Yul;Park, Tae-Wook;Lim, Se-Han;Oh, Im-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.89-105
    • /
    • 2008
  • Sea level and atmospheric pressure data of 1999-2005 from four stations along the Korean east coast were analyzed to understand the sea level variability and its causal mechanism. The results of the wavelet and the auto-spectrum analyses indicate that the sea level fluctuations of 3-17 day period are statistically significant at the 95% confidence level, especially in spring to early summer. In this period, the coherency between the sea levels and the atmospheric pressures in a cross-spectrum is high, implying the importance of an inverted barometric effect in generation of the sea level fluctuations. To learn about the sea level variability, the cross-spectrum analyses were applied between the sea levels of the adjacent stations. The results show a case of southward phase propagations along the coast, as in 1999, 2003 and 2005, and an another case of no progressive phase lags between the stations, as in 2000-2002, and 2004. The phase speed in the former case is 12-15 m/s, which is a commonly observed phase speed of coastal Kelvin waves. Generation of such fluctuations seems to be related to low pressure cells developed in the Asian continent in spring and summer and moving eastward over the coastal region north of the stations. The latter case of no progressive phase lag, however, occurs when the low pressure cells developed in the continent move along the region south of the stations. In this case, the northeastward phase propagation with a speed of 5-8 m/s is observed along the southwestern coast of Japan.

Combustion Condition Monitoring of the Marine Diesel Engine using Acceleration Signal of Cylinder Head (실린더 헤더의 가속도 신호를 이용한 선박용 디젤엔진의 연소 상태 모니터링)

  • Seo, Jong-Cheol;Kim, Sang-Hwan;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.607-610
    • /
    • 2009
  • The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking

  • PDF