• Title/Summary/Keyword: wavelet spectrum

Search Result 145, Processing Time 0.027 seconds

Development of 4 Channel EGG Measurement System and Running Spectral Analysis (4채널 위전도 시스템의 개발 및 스펙트럼 분석)

  • Ryu, C.Y.;Kim, D.W.;Jung, J.K.;Kim, S.C.;Yang, Y.S.;Lee, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.317-320
    • /
    • 1996
  • Electrogastrography(EGG) has been an attractive method for physiological and pathophysiological studies of the stomach and now is on the verge of becoming a new clinical tool in gastroenterology. In this study 4 channel EGG measurement system was constructed and running spectrum analysis was developed for 2D and 3D display of power spectrum with time and frequency. A wavelet multiresolution method was utilized for elimination of baseline drift and for filtering out noises.

  • PDF

Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

  • Ali, Ahmer;Abu-Hayah, Nadin;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.825-837
    • /
    • 2017
  • Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

EXTRACTION OF INTERPRETIVE WAVELETS BY MODIFIED WIENER FILTER METHOD - TEST AND EVALUATION WITH MARINE SESMIIC DATA- (修正 위너필터 方法에 依한 解釋波의 抽出 -海洋彈性波 探査資料에 依한 實驗 및 評價)

  • Youn, Oong Koo;Han, Sang-Joon;Park, Byung Kwon
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 1983
  • Pizza's synthetic model, a modified Wiener filter method, was tested to establish the procedure of desirable interpretive wavelet extraction and its application to the marine seismic exploration using several approaches with a real offshore seismic data of the southeast Asia. Noise spectrum acquisition is difficult and any assumptions for it do not produce interpretive wavelets as good as synthetic model result by Piazza (1979). however the resolution could be improved with spiking deconvoultion and following zero phase bandpass filter, and the testing procedure and evaluatttion of results can hopefully contribute in future study and practical evaluation of Piazza's method.

  • PDF

Low Noise Time-Frequency Analysis Algorithm for Real-Time Spectral Estimation (실시간 뇌파 특성 분석을 위한 저잡음 스펙트럼 추정 알고리즘)

  • Kim, Yeon-Su;Park, Beom-Su;Kim, Seong-Eun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.805-810
    • /
    • 2019
  • We present a time-frequency analysis algorithm based on the multitaper method and the state-space frameworks. In general, time-frequency representations have a trade-off between the time duration and the spectral bandwidth by the uncertainty principle. To optimize the trade-off problems, the short-time Fourier transform and wavelet based algorithms have been developed. Alternatively, the authors proposed the state-space frameworks based on the multitaper method in the previous work. In this paper, we develop a real-time algorithm to estimate variances and spectrum using the state-space framework. We test our algorithm in spectral analysis of simulated data.

The cold water mass along the southeast and east coasts of Korea in 2016-2017

  • Choo, Hyo-Sang
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.7
    • /
    • pp.243-259
    • /
    • 2021
  • The spatial and temporal behaviors and fluctuations of the cold water that appeared in the South East Sea and the East Sea coast from 2016 to 2017 were investigated. The water temperature drop was large in the east coast from April to June and the southeast coast from July to September, and the temperature drop period was longer in the southeast coast. The water temperature fluctuated sensitively to the wind direction, and it gradually decreased in the southwest wind but rose as if jumping in the northeast wind. Wind stress and surface water temperature had an inverse correlation, which was larger in Bukhang-Idukseo, and decreased toward the north of Guryongpo. The cold water appeared mainly in Geojedo-Pohang after 1 to 2 days when the southwest wind was strong, but when the wind became weak, it shrank to the Idukseo (Ulgi-Gampo) and extended into the open sea in a tongue shape. Cold water was distributed only in Samcheok-Toseong in mid-May, Idukseo-Guryongpo and Hupo-Jukbyeon-Samcheok from late May to mid-July, and Bukhang-Idukseo in August-September. The intensity of cold water was greatest in mid-August, and the center of cold water descended from the east coast to the southeast coast from spring to summer. The water temperature fluctuation was dominant at the periods of 1 d and 7-21 d. In wavelet spectrum analysis of water temperature and wind, wind speed increase-water temperature decrease showed phase difference of 12 h in 2 d, 18 h in 3 d, 1.5 d in 4-8 d, and 2-3 d in 8-24 d period. The correlation between the two parameters was large in Geojedo and Namhang, Bukhang-Idukseo, Guryongpo-Jukbyeon, and Samcheok-Toseong. Monitoring stations with high correlation in all periods were generally parallel to the monsoon direction.

Time-varying characteristics analysis of vehicle-bridge interaction system using an accurate time-frequency method

  • Tian-Li Huang;Lei Tang;Chen-Lu Zhan;Xu-Qiang Shang;Ning-Bo Wang;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • The evaluation of dynamic characteristics of bridges under operational traffic loads is a crucial aspect of bridge structural health monitoring. In the vehicle-bridge interaction (VBI) system, the vibration responses of bridge exhibit time-varying characteristics. To address this issue, an accurate time-frequency analysis method that combines the autoregressive power spectrum based empirical wavelet transform (AR-EWT) and local maximum synchrosqueezing transform (LMSST) is proposed to identify the time-varying instantaneous frequencies (IFs) of the bridge in the VBI system. The AR-EWT method decomposes the vibration response of the bridge into mono-component signals. Then, LMSST is employed to identify the IFs of each mono-component signal. The AR-EWT combined with the LMSST method (AR-EWT+LMSST) can resolve the problem that LMSST cannot effectively identify the multi-component signals with weak amplitude components. The proposed AR-EWT+LMSST method is compared with some advanced time-frequency analysis techniques such as synchrosqueezing transform (SST), synchroextracting transform (SET), and LMSST. The results demonstrate that the proposed AR-EWT+LMSST method can improve the accuracy of identified IFs. The effectiveness and applicability of the proposed method are validated through a multi-component signal, a VBI numerical model with a four-degree-of-freedom half-car, and a VBI model experiment. The effect of vehicle characteristics, vehicle speed, and road surface roughness on the identified IFs of bridge are investigated.

Machine Fault Diagnosis Method based on DWT Power Spectral Density using Multi Patten Recognition (다중 패턴 인식 기법을 이용한 DWT 전력 스펙트럼 밀도 기반 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min;Vununu, Caleb;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1233-1241
    • /
    • 2019
  • The goal of the sound-based mechanical fault diagnosis technique is to automatically find abnormal signals in the machine using acoustic emission. Conventional methods of using mathematical models have been found to be inaccurate due to the complexity of industrial mechanical systems and the existence of nonlinear factors such as noise. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose an automatic fault diagnosis method using discrete wavelet transform and power spectrum density using multi pattern recognition. First, we perform DWT-based filtering analysis for noise cancelling and effective feature extraction. Next, the power spectral density(PSD) is performed on each subband of the DWT in order to effectively extract feature vectors of sound. Finally, each PSD data is extracted with the features of the classifier using multi pattern recognition. The results show that the proposed method can not only be used effectively to detect faults as well as apply to various automatic diagnosis system based on sound.

Underwater transient signal detection based on CFAR Power-Law using Doubel-Density Discerte Wavelet Transform coefficient (Double-Density 이산 웨이블렛 변환의 계수를 이용한 CFAR Power-Law기반의 수중 천이 신호 탐지)

  • Jung, Seung-Taek;Cha, Dae-Hyun;Lim, Tae-Gyun;Kim, Jong-Hoon;Hwang, Chan-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.175-179
    • /
    • 2007
  • To existing method which uses energy variation and spectrum deviation to detect the underwater transient signal is useful to detect white noise environment, but it is not useful to do colored noise environment. To improve capacity of detecting the underwater transient signal both in white noise environment and colored noise environment, this study takes advantage of Double Density Discrete Wavelet Transform and CFAR Power-Law.

  • PDF

Digital Watermarking for Multi-Level Data Hiding to Color Images (컬러 영상에서 다중-레벨 데이터 은닉을 위한 디지털 워터마킹)

  • Seo, Jung-Hee;Park, Hung-Bog
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.337-342
    • /
    • 2007
  • Multi-level has advantage to express image in all levels with different images. This paper proposes digital watermarking built-in technique to transform color image to YCbCr color space to guarantee robustness and imperceptibility of the watermark in the various expression of color images, and to hide multi-level data which shows spread spectrum from low resolution to whole resolution for the Y-signal of multi-level. In color signal, Y-signal and low resolution built-in watermark has risk to be visible, but it can guarantee the robustness of watermark in various colors and transformed images. As a result of the experiment, wavelet compression image with built-in watermark showed robustness and imperceptibility of watermark.

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.