• Title/Summary/Keyword: wavelet packet energy

Search Result 31, Processing Time 0.024 seconds

A Single Channel Voice Activity Detection for Noisy Environments Using Wavelet Packet Decomposition and Teager Energy (웨이블렛 패킷 변환과 Teager 에너지를 이용한 잡음 환경에서의 단일 채널 음성 판별)

  • Koo, Boneung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.139-145
    • /
    • 2014
  • In this paper, a feature parameter is obtained by applying the Teager energy to the WPD(Wavelet Packet Decomposition) coefficients. The threshold value is obtained based on means and standard deviations of nonspeech frames. Experimental results by using TIMIT speech and NOISEX-92 noise databases show that the proposed algorithm is superior to the typical VAD algorithm. The ROC(Receiver Operating Characteristics) curves are used to compare performance of VAD's for SNR values of ranging from 10 to -10 dB.

Statistical damage classification method based on wavelet packet analysis

  • Law, S.S.;Zhu, X.Q.;Tian, Y.J.;Li, X.Y.;Wu, S.Q.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.459-486
    • /
    • 2013
  • A novel damage classification method based on wavelet packet transform and statistical analysis is developed in this study for structural health monitoring. The response signal of a structure under an impact load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet components are then calculated to obtain the energy distribution. Statistical similarity comparison based on an F-test is used to classify the structure from changes in the wavelet packet energy distribution. A statistical indicator is developed to describe the damage extent of the structure. This approach is applied to the test results from simply supported reinforced concrete beams in the laboratory. Cases with single and two damages are created from static loading, and accelerations of the structure from under impact loads are analyzed. Results show that the method can be used with no reference baseline measurement and model for the damage monitoring and assessment of the structure with alarms at a specified significance level.

Fault Diagnosis of Power Converter for Switched Reluctance Motor based on Discrete Degree Analysis of Wavelet Packet Energy

  • Gan, Chun;Wu, Jianhua;Yang, Shiyou
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.336-341
    • /
    • 2013
  • Power converter plays a very important role in switched reluctance motor (SRM) systems, and it is also the easiest one to experience failures. Power converter faults will cause the motor to run in non equilibrium states, and a long time fault operation will lead to motor and other modules damaged, and make the system completely lose working stability. This paper uses an asymmetric bridge converter as the research object with three-phase SRM, employs the wavelet packet decomposition for the phase currents. It analyzes and studies the short circuit fault condition of IGBT, uses an energy discrete degree of the wavelet packet nodes as the fault characteristic, and conducts the corresponding experimental and simulation analysis to verify the effectiveness and practicality of the proposed method.

Reduced wavelet component energy-based approach for damage detection of jacket type offshore platform

  • Shahverdi, Sajad;Lotfollahi-Yaghin, Mohammad Ali;Asgarian, Behrouz
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.589-604
    • /
    • 2013
  • Identification of damage has become an evolving area of research over the last few decades with increasing the need of online health monitoring of the large structures. The visual damage detection can be impractical, expensive and ineffective in case of large structures, e.g., offshore platforms, offshore pipelines, multi-storied buildings and bridges. Damage in a system causes a change in the dynamic properties of the system. The structural damage is typically a local phenomenon, which tends to be captured by higher frequency signals. Most of vibration-based damage detection methods require modal properties that are obtained from measured signals through the system identification techniques. However, the modal properties such as natural frequencies and mode shapes are not such good sensitive indication of structural damage. Identification of damaged jacket type offshore platform members, based on wavelet packet transform is presented in this paper. The jacket platform is excited by simple wave load. Response of actual jacket needs to be measured. Dynamic signals are measured by finite element analysis result. It is assumed that this is actual response of the platform measured in the field. The dynamic signals first decomposed into wavelet packet components. Then eliminating some of the component signals (eliminate approximation component of wavelet packet decomposition), component energies of remained signal (detail components) are calculated and used for damage assessment. This method is called Detail Signal Energy Rate Index (DSERI). The results show that reduced wavelet packet component energies are good candidate indices which are sensitive to structural damage. These component energies can be used for damage assessment including identifying damage occurrence and are applicable for finding damages' location.

A Study on High-Compressed Signal Enhancement using Wavelet Packet (Wavelet Packet을 이용한 고압축신호 개선에 관한 연구)

  • Min Woong kyu;Jang Sungwook;Yang Sung-il;Kwon Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.85-88
    • /
    • 1999
  • Adapted Local Trigonometric Transforms은 매우 높은 energy compaction을 가지므로 음성 및 영상신호에 이용하려는 시도가 이루어지고 있다. [1] 그러나 이 경우 복원 된 신호에는 시간 영역에서 불연속점이 발생하여 일종의 tick noise가 발생한다. 또한 phase성분을 잃게 되어 금속성 잡음도 추가하여 나타난다. 본 논문에서는 이러한 문제점을 해결하기 위한 Polynomial fitting 방식과 Wavelet Packet Transforms 방식을 제안한다. Polynomial fitting 방식으로는 시간축상에서 발생하는 문제를 해결하고 Wavelet Packet Transforms으로 Phase 문제를 해결한다. [2,3] 실험결과, 압축이전의 신호와 비교할 때 SNR에 있어서 개선을 보이며 tick noise와 금속성 잡음이 제거된 개선된 신호음을 확인 할 수 있었다.

  • PDF

Structural Health Monitoring Using Wavelet Packet Transform (웨이블렛 팩킷변환을 이용한 구조물의 이상상태 모니터링)

  • Kim, Han-Sang;Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.619-624
    • /
    • 2004
  • In this research, the structural health monitoring method using wavelet packet analysis and artificial neural network (ANN) is developed. Wavelet packet Transform (WPT) is applied to the response acceleration of a 3 element-cantilever beam which is subjected to impulse load and Gaussian random load to decompose the response signal, then the energy of each component is calculated. The first ten largest components in magnitude among the decomposed components are selected as input to an ANN to identify the damage location and severity. This method successfully predicted the amount of damage in the structure when the structure is subjected to impulse load. However, when the beam is subjected to Gaussian random load which can be considered as ambient vibration it did not yield satisfactory results. This method is applicable to structures such as machinery gears that are subjected to repetitive loads.

  • PDF

Damage Evaluation of a Framed Structure Using Wavelet Packet Transform (웨이블렛펙킷 변환을 이용한 프레임 구조물의 건전성 평가)

  • Kim, Han Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.159-166
    • /
    • 2007
  • This paper evaluates the soundness of structural elements using Wavelet Packet Transform (WPT). WPT is applied to the response acceleration of a framed structure which is subjected to earthquake load to decompose the response acceleration, then the energy of each component is calculated. The first five largest components in energy magnitude among the decomposed components are selected as input to an ANN to identify the damage location and severity. Two nodes in output layer yield damaged element and damage severity respectively. This method successfully evaluates the amount of damage and its location in the structure.

EEG Data Compression Using the Feature of Wavelet Packet Coefficients (웨이블릿 패킷 분해를 이용한 EEG 신호압축)

  • Cho, Hyun-Sook;Lee, Hyoung;Hwang, Sun-Tae
    • Journal of Information Technology Applications and Management
    • /
    • v.10 no.4
    • /
    • pp.159-168
    • /
    • 2003
  • This paper is concerned with the compression of EEG signals using wavelet-packet based techniques. EEG data compression is desirable for a number of reasons. Primarily it decreases for transmission time, archival storage space, and in portable systems, it decreases memory requirements or increases channels and bandwidth. Upon wavelet decomposition, inherent redundancies in the signal can be removed through thresholding to achieve data compression. We proposed the energy cumulative function for deciding of the threshold value and it works very innovative of EEG data.

  • PDF

Multi-stage structural damage diagnosis method based on "energy-damage" theory

  • Yi, Ting-Hua;Li, Hong-Nan;Sun, Hong-Min
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.345-361
    • /
    • 2013
  • Locating and assessing the severity of damage in large or complex structures is one of the most challenging problems in the field of civil engineering. Considering that the wavelet packet transform (WPT) has the ability to clearly reflect the damage characteristics of structural response signals and the artificial neural network (ANN) is capable of learning in an unsupervised manner and of forming new classes when the structural exhibits change, this paper investigates a multi-stage structural damage diagnosis method by using the WPT and ANN based on "energy-damage" theory, in which, the wavelet packet component energies are first extracted to be damage sensitive feature and then adopted as input into an improved back propagation (BP) neural network model for damage diagnosis in a step by step mode. To validate the efficacy of the presented approach of the damage diagnosis, the benchmark structure of the American Society of Civil Engineers (ASCE) is employed in the case study. The results of damage diagnosis indicate that the method herein is computationally efficient and is able to detect the existence of different damage patterns in the simulated experiment where minor, moderate and severe damages corresponds to involving in the loss of stiffness on braces or the removal bracing in various combinations.